Use of DTM data for the purpose of developing an earthwork volume balance
 
More details
Hide details
1
Department of Geodesy, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Krakow
 
2
Geodetic Students Society, University of Agriculture in Krakow
 
 
Submission date: 2025-11-14
 
 
Acceptance date: 2025-11-21
 
 
Publication date: 2026-01-15
 
 
Corresponding author
Paweł Kotlarz   

Wydział Inżynierii Środowiska i Geodezji, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Aleja Mickiewicza 21, 31-120, Kraków, Poland
 
 
Geomatics, Landmanagement and Landscape 2025;(4)
 
KEYWORDS
TOPICS
ABSTRACT
The subject of this study is to develop an earthwork volume balance for future works related to the construction of a single-family housing estate. As part of the design and construction of a single-family housing estate, the earthwork balance is crucial, as it allows for effective earthworks management and appropriate cost calculation. Proper planning of earthworks reduces the need for soil transport and minimises operating costs. Two models were developed to conduct the earthworks budget: the current terrain model and the design terrain model. The current terrain model was created on the basis of an integration of geodetic measurements and data from the digital terrain model (DTM). Then, based on the design assumptions, a design terrain model was generated, taking into account the planned embankments, excavations, and the target foundation level of buildings and road infrastructure. Analysis of the differences between the current and design terrain models made it possible to determine the volume of earth masses to be removed, relocated, or managed on the project site. Geodetic methods and GIS tools were used in the calculation process, enabling precise determination of volumetric differences. The obtained results indicate the possibility of optimising earthworks management through appropriate distribution of embankments and reduction of the volume of soil requiring removal. The conclusions from the analysis can contribute to better planning of construction investments and reduce their environmental impact.
REFERENCES (14)
1.
Andersen H.-E. 2002. The use of airborne laser scanner data (LIDAR) for forest measurement applications. WFCA.
 
2.
Borowiecki I., Ślusarski M. 2010. Lotniczy skaning laserowy LIDAR Miasta Krakowa (ocena dokładnościowa). Infrastructure and Ecology of Rural Areas, 3, 127–137.
 
3.
Elaksher A., Tarig A., Abdullatif A. 2023. A Quantitative Assessment of LIDAR Data Accuracy. Remote Sens., 15(2), 442.
 
4.
Gaździcki J. 1990. Systemy informacji przestrzennej. Polskie Przedsiębiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera SA, Warszawa.
 
5.
Hejmanowska B. 2013. Zastosowanie rozkładu Laplace’a do określania niepewności danych przestrzennych na przykładzie NMT i systemu IACS. Wydawnictwa AGH.
 
6.
Kraus K., Pfeifer N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193–203.
 
7.
Maas H-G. 2003. Least-Squares Matching with Airborne Laserscanning Data in a TIN Structure. IAPRS.
 
8.
Rozporządzenie Ministra Rozwoju z dnia 18 sierpnia 2020 r. w sprawie standardów technicznych wykonywania geodezyjnych pomiarów sytuacyjnych i wysokościowych oraz opracowywania i przekazywania wyników tych pomiarów do państwowego zasobu geodezyjnego i kartograficznego (Dz.U. 2020 poz. 1429).
 
9.
Tarek Z. 2002. Skanowanie terenu laserem lotniczym. Geodeta, 12, Warszawa.
 
10.
Ustawa z dnia 14 grudnia 2012 r. o odpadach (Dz.U. 2013 poz. 21).
 
11.
Ustawa z dnia 20 lipca 2017 r. ‒ Prawo wodne (Dz.U. 2017 poz. 1566).
 
ISSN:2300-1496
Journals System - logo
Scroll to top