Assessment of the metrological properties of a handheld MLS point cloud for geodetic field surveys
More details
Hide details
1
Department of Rural Land Surveying, Cadastre and Photogrammetry, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Krakow
2
Department of Geodesy, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Krakow
3
Geodetic Students Society, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Krakow
Submission date: 2025-11-04
Final revision date: 2025-11-16
Acceptance date: 2025-11-17
Publication date: 2026-01-15
Corresponding author
Przemysław Klapa
Department of Geodesy, Faculty of Environmental Engineering and Geodesy, University of Agriculture in Krakow, Balicka 253a, 31-120 Krakow, Poland, Poland
Geomatics, Landmanagement and Landscape 2025;(4)
KEYWORDS
TOPICS
ABSTRACT
A 3D point cloud is a collection of millions of spatial points that faithfully capture object shape and structure. Handheld mobile laser scanners are increasingly adopted because they enable rapid and complete acquisition. This paper evaluates the geometric and metrological quality of a point cloud collected with a handheld MandEye PRO scanner based on the Livox Mid-360 from an architectural object, using terrestrial laser scanning with a Leica ScanStation P40 and a network of total station control points as references. Point-like, linear, and planar features were assessed by registration to the control frame, segment-length comparisons, plane fitting, and cloud-to-cloud distance analysis. After registration, root mean square errors on control points fall within 0.02–0.19 m (mean 0.08 m). Segment lengths are consistent to within a single centimetre across handheld MLS, TLS, total station measurements, and direct field readings, while the differences in areas of fitted planes are 0.7–1.9%. Local deviations concentrate along edges and in shadowed zones, indicating sensitivity to trajectory coverage and sampling density. In well-covered regions, the overall agreement between MLS and TLS remains stable, whereas gaps in visibility or sparse sampling lead to localised discrepancies. The results show that, in this configuration, handheld mobile scanning provides accuracy consistent with the requirements of geodetic documentation while offering high acquisition efficiency. These findings support the use of handheld MLS for architectural surveying and geodetic fieldwork, provided that route planning and sampling are designed to ensure robust coverage of critical facades, edges, and occluded areas.
REFERENCES (16)
1.
Běloch L., Pavelka K. 2024. Optimizing Mobile Laser Scanning Accuracy for Urban Applications: A Comparison by Strategy of Different Measured Ground Points. Appl. Sci., 14, 3387.
https://doi.org/10.3390/app140....
4.
Gawronek P., Klapa P., Sochacki D., Piaseczna K. 2024. Multi-Platform Collaboration in Integrated Surveying: Ensuring Completeness and Reliability of Geospatial Data ‒ A Case Study. Remote Sens., 16, 4499.
https://doi.org/10.3390/rs1623....
5.
Karsznia K. 2008. Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej. Acta Sci. Pol., Geod. Descr. Terr., 7(1), 35‒46.
6.
Klapa P., Gawronek P., Gargula T., Sokołowska A., Sajdak K. 2025. Integrating surveying, photogrammetric, and remote sensing data to generate large-scale maps. Archives of Civil Engineering, 71, 37‒50.
https://doi.org/10.24425/ace.2....
7.
Krzan G. 2013. Technologia zintegrowanych pomiarów klasycznych i satelitarnych GPS. Biuletyn Wojskowej Akademii Technicznej, 62(4), 47‒61.
8.
Livox. 2024. Livox Mid-360, User Manual v1.2.
9.
Mitka B., Klapa P., Gawronek P. 2024. Laboratory tests of metrological characteristics of a non-repetitive low-cost mobile handheld laser scanner. Sensors, 24, 6010.
https://doi.org/10.3390/s24186....
10.
Noguchi A., Nakamura R., Takata Y., Matsuo Y., Oya Y., Uchida S. 2023. Comparison and evaluation of TLSs and mobile LiDAR scanners for multi-scale 3D documentation of cultural heritage. Int. Arch. Photogramm. Remote Sens., Spatial Inf. Sci. XLVIII-M-2-2023, 1135‒1139.
https://doi.org/10.5194/isprs-....
11.
Przegon W. 2016. Geodezja rolna i architektura krajobrazu w kształtowaniu przestrzeni rurystycznej. Teoria, badania, aplikacje. Wydawnictwo Uniwersytetu Rolniczego w Krakowie, Kraków.
12.
Redovniković L., Jakopec A., Będkowski J., Jagetić J. 2024. The affordable DIY Mandeye LiDAR system for surveying caves, and how to convert 3D clouds into traditional cave ground plans and extended profiles. International Journal of Speleology, 53(3), ijs2535.
https://doi.org/10.5038/1827-8....
13.
Room M.H.M., Ahmad A. 2023. Fusion of UAV-based LiDAR and mobile laser scanning data for construction of 3D building model. Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. XLVIII-4/W6-2022, 297‒302.
https://doi.org/10.5194/isprs-....
14.
Rozporządzenie Ministra Rozwoju z dnia 18 sierpnia 2020 r. w sprawie standardów technicznych wykonywania geodezyjnych pomiarów sytuacyjnych i wysokościowych oraz opracowywania i przekazywania wyników tych pomiarów do państwowego zasobu geodezyjnego i kartograficznego. Dz.U. 2020, poz. 1429.
15.
Siejka Z. 2014. Szybkie pozyskiwanie precyzyjnych i wiarygodnych informacji geodezyjnych w czasie rzeczywistym na potrzeby inżynierii środowiska. Acta Scientiarum Polonorum, Formatio Circumiectus, 13(3), 79‒90.
https://doi.org/10.15576/ASP.F....
16.
Xia S., Chen D., Wang R., Li J., Zhang X. 2020. Geometric Primitives in LiDAR Point Clouds: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, early access.
https://doi.org/10.1109/JSTARS....