LIDAR data processing for the inventory of the railway infrastructure
More details
Hide details
1
Department of Agricultural Surveying, Cadastre and Photogrammetry, University of Agriculture in Krakow
Submission date: 2025-10-20
Final revision date: 2025-10-28
Acceptance date: 2025-10-29
Publication date: 2026-01-03
Corresponding author
Bogusława Kwoczyńska
Katedra Geodezji Rolnej, Katastru i Fotogrametrii, Uniwersytet Rolniczy w Krakowie, ul. Balicka 253a, 30-198, Kraków, Poland
Geomatics, Landmanagement and Landscape 2025;(4)
KEYWORDS
TOPICS
ABSTRACT
Classic methods of geodetic and diagnostic measurements performed on railway infrastructure are characterised by the time-consuming nature of data acquisition. For highly complex structures, such as railway stations, it is not easy to collect comprehensive information about the inventoried structure. Hence, there has been a considerable increase in the demand for and use of modern measurement techniques, such as mobile and aerial laser scanning, where a compromise between the quality and speed of information acquisition is required and achievable. The paper demonstrates the possibility of using aerial laser scanning technology for the inventory and modelling of railway infrastructure. The following presentation outlines the stages of processing point clouds obtained in different coordinate systems in the TerraSolid program environment. The transformation of point clouds between the ‘1992’ and ‘2000’ systems followed the acquisition of data from a 2130 m long section of railway line in Bochnia, in the Małopolska Voivodeship. The density of the source point clouds was 11 and 17 points/m2, respectively. The transformation of the clouds into a single coordinate system enabled the creation of a point cloud with an average density of 28 points/m2. This dense point cloud, created by transforming the ‘2000’ system, formed the basis for inventorying the railway infrastructure and creating a 3D model of the studied object, using MicroStation and TerraSolid software.
REFERENCES (38)
1.
Arastounia M. 2012. Automatic Classification of LIDAR Point Clouds in A Railway Environment. Univ. Twente, Netherlands.
2.
Arastounia M. 2017. An Enhanced Algorithm for Concurrent Recognition of Rail Tracks and Power Cables from Terrestrial and Airborne LIDAR Point Clouds. Infrastructures, 2, 8.
3.
Beger R., Gedrange C., Hecht R., Neubert M. 2011. Data fusion of extremely high resolution aerial imagery and LIDAR data for automated railroad centre line reconstruction. ISPRS J. Photogramm. Remote Sens., 66, S40–S51.
4.
Bęcek K., Gawronek P., Klapa P., Kwoczyńska B., Matuła P., Michałowska K., Mikrut S., Mitka B., Piech I., Makuch M. 2015. Modelowanie i wizualizacja danych 3D na podstawie pomiarów fotogrametrycznych i skaningu laserowego. WSIE, Rzeszów.
5.
Bitenc M., Lindenbergh R., Khoshelham K., van Waarden A.P. 2011. Evaluation of a LiDAR Land-based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sensing, 3, 7, 1472‒1491.
6.
Borowiec N. 2014. Ekstrakcja elementów liniowych infrastruktury kolejowej na podstawie danych z lotniczego skaningu laserowego. Logistyka, 6, 2211‒2218.
7.
Che E., Jung J., Olsen M.J. 2019. Object recognition, segmentation, and classification of mobile laser scanning point clouds: A state of the art review. Sensors (Switzerland), 19.
8.
Chen X., Li J., Cloud P., Crack P., Detection A., Road U., Canada I. 2016. A feasibility study on use of generic mobile laser scanning system. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLI, 545–549.
9.
D-19. 2000. Instrukcja o organizacji wykonywaniu pomiarów w geodezji kolejowej, załącznik do Zarządzenia Nr 144 Zarządu PKP z dnia 23 października 2000 r.
10.
Elberink S., Khoshelham K. 2015. Automatic Extraction of Railroad Centerlines from Mobile Laser Scanning Data. Remote Sens., 7, 5565–5583.
11.
Falamarzi A., Moridpour M., Nazem A. 2019. Review on Existing Sensors and Devices for Inspecting Railway Infrastructure. J. Kejuruter., 31, 1–10.
12.
Głowienka E., Jankowicz B., Kwoczyńska B., Kuras P., Michałowska K., Mikrut S., Moskal A., Piech I., Strach M., Sroka J. 2015. Photogrammetry and the laser scanning in the 3D modeling (Fotogrametria i skaning laserowy w modelowaniu 3D), WSIE, Rzeszów.
13.
Hackel T., Stein D., Maindorfer I., Lauer M., Reiterer A. 2015. Track detection in 3D laser scanning data of railway infrastructure. Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 693–698.
14.
Kadaj R. 2002. Polskie układy współrzędnych. Formuły transformacyjne, algorytmy i programy. Rzeszów.
15.
Kamczyk A. 2013. Prace geodezyjne i kartograficzne na terenach zamkniętych Narodowej Sieci Kolejowej w Polsce. Cz. I. Przegląd Geodezyjny, 85, 2.
16.
Kremer J., Grimm A. 2012. The railmapper ‒ a dedicated mobile lidar mapping system for railway networks. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5, 477‒482.
17.
Kwoczyńska B., Sagan W., Dziura K. 2016. Elaboration and Modeling of the Railway Infrastructure Using Data from Airborne and Mobile Laser Scanning. IEEE Xplore, 106–115,
https://doi.org/10.1109/BGC.Ge.... 28.
18.
Lou Y., Zhang T., Tang J., Song W., Zhang Y., Chen L. 2018. A Fast Algorithm for Rail Extraction Using Mobile Laser Scanning Data. Remote Sens., 10, 1998.
19.
Luo C., Jwa Y., Sohn G. 2014. Context based multiple railway object recognition from mobile laser scanning data. Int. Geosci. Remote Sens. Symp., 3602–3605.
20.
Ma L., Li Y., Li J., Wang C., Wang R., Chapman M.A. 2018. Mobile laser scanned point-clouds for road object detection and extraction: A review. Remote Sens., 10, 1–33.
21.
Marmol U., Mikrut S. 2017. Attempts at automatic detection of railway head edges from images and laser data. Image Processing & Communication, 17, 4, 151‒160.
https://doi.org/10.2478/v10248....
22.
Mikrut S., Pyka K., Tokarczyk R. 2012. Systemy do pomiaru skrajni kolejowej – przegląd i tendencje rozwojowe. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 23, 291–301.
23.
Muhamad M., Kusevic K., Mrstik P., Greenspan M. 2013. Automatic Rail Extraction in Terrestrial and Airborne LIDAR Data. IEEE Xplore.
https://doi.org/10.1109/3DV.20....
24.
Neubert M., Hecht R., Gedrange C., Trommler M., Herold H., Kruger T., Brimmer F. 2012. Extraction of Railroad Objects From Very High Resolution Helicopter-Borne Lidar and Ortho-Image Data. Comm. VI, WG VI/4.
25.
Pyka K., Borowiec N., Poręba M., Słota M. 2010. Airborne Laser Scanning Data For Railway Lines Survey. PAK, 56, 01, 2‒5.
26.
Rodríguez-Cuenca B., García-Cortés S., Ordóñez C., Alonso M.C. 2015. Automatic detection and classification of pole-like objects in urban point cloud data using an anomaly detection algorithm. Remote Sens., 7, 12680–12703.
27.
Sadeghi J., Motieyan Najar M.E., Zakeri J.A., Kuttelwascher C. 2019. Development of railway ballast geometry index using automated measurement system. Measurement, 138, 132–142.
28.
Sánchez-Rodríguez A., Riveiro B., Soilán M., González-deSantos L.M. 2018. Automated detection and 899 decomposition of railway tunnels from Mobile Laser Scanning Datasets. Autom. Constr., 96, 171–179.
29.
Soilán M., Sánchez-Rodríguez A., del Río-Barral P., Perez-Collazo C., Arias P., Riveiro B. 2019. Review of Laser Scanning Technologies and Their Applications for Road and Railway Infrastructure Monitoring. Infrastructures, 4, 58.
https://doi.org/10.3390/infras....
30.
Soni A., Robson S., Gleeson B. 2014. Extracting rail track geometry from static terrestrial laser scans for monitoring purposes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5, 553‒557.
31.
Stein D., Spindler M., Lauer M. 2016. Model-based rail detection in mobile laser scanning data. IEEE Intell. Veh. Symp. Proc., August, 654–661.
32.
Strach M. 2009. Pomiary dróg kolejowych i obiektów z nimi związanych oraz opracowanie wyników na potrzeby modernizacji kolei konwencjonalnych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 19.
33.
Strach M. 2013. Nowoczesne techniki pomiarowe w procesie modernizacji i diagnostyce geometrii torów kolejowych. Rozprawa habilitacyjna. AGH, Kraków.
34.
Tarek Z. 2002. Skanowanie terenu laserem lotniczym. Geodeta, 12. Warszawa.
35.
Yang B., Fang L., Li J. 2013. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens., 79, 80–93.
36.
Yang B., Fang L. 2014. Automated extraction of 3-D railway tracks from mobile laser scanning point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 4750–4761.
37.
Yu Y., Li J., Guan H., Wang C., Yu J. 2015. Semiautomated Extraction of Street Light Poles From Mobile LIDAR Point-Clouds. IEEE Trans. Geosci. Remote Sens., 53, 1374–1386.
38.
Zhu L., Hyyppa J. 2014. The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D. Remote Sens., 6, 3075–3100.