Transformation of geodetic heights between local reference systems – algorithm for rigorous adjustment
More details
Hide details
1
University of Agriculture in Krakow
Department of Geodesy
Submission date: 2022-11-18
Final revision date: 2022-12-18
Acceptance date: 2022-12-20
Publication date: 2022-12-31
Geomatics, Landmanagement and Landscape 2022;(4)
KEYWORDS
TOPICS
ABSTRACT
The topic of transformations between planar or spatial coordinate systems has been extensively addressed in the literature for years. Usually, researchers present in scientific papers the definitions of iterative algorithms or analytic solutions of 2D or 3D transformations. However, there is a gap in the field with regard to 1D (vertical) transformations. It seems to be quite easy to fill, as it is sufficient to determine one parameter – the vertical shift, i.e. the height difference between two local reference levels. For this purpose, a single (at least) adjustment point is needed, i.e. a surveying benchmark of known heights in both reference systems. However, there is no precisely defined model of rigorous adjustment for a larger number of adjustment points (s > 1). In this paper, the Authors’ have shown several variants of transformations between vertical coordinate systems. These variants include different approaches to weighting the “observations” (heights of adjustment points), such as transformation without weighting and transformation with weighting dependent on the distance between adjustment points (horizontal and vertical distances). Each of the variants was developed in two successive approaches: without transformation corrections and with post-transformation corrections. The research arrived at the latter analogically to the corrections used in planar coordinate transformations (a modification of post-transformation Hausbrandt correction). The analyses made it possible to draw general conclusions determining the relationships between weighting the observations together with applying post-transformation corrections, and the results of height transformation. These findings can become the basis for developers of geodetic computing systems, in terms of the possibility of extending them with a 1D transformation module (in addition to 2D and 3D transformations).