Identification of potential groundwater zones using the analytical hierarchical process technique: Case study of the region of Constantine – Northeastern Algeria
More details
Hide details
1
Centre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Constantine, Algérie
2
Laboratory of Natural Resources and Management of Sensitive Environments, Department of Geology, Faculty of Earth Sciences and Architecture, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria
3
Laboratory of Geothermal Energy, Groundwater and Mineral Resources, Department of Geological Engineering, Suleyman Demirel University, Isparta, Turkey
Submission date: 2024-08-13
Final revision date: 2025-01-20
Acceptance date: 2025-01-27
Publication date: 2025-04-14
Corresponding author
Nouh Rebouh
Prévention et atténuation des catastrophes, Centre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie., Constantine, 25000, Constantine, Algeria
Geomatics, Landmanagement and Landscape 2025;(1)
KEYWORDS
TOPICS
ABSTRACT
This study presents an integrated approach for identifying groundwater potential zones in the Constantine region, northeastern Algeria, by combining the Analytical Hierarchical Process (AHP) with Geographic Information Systems (GIS). The methodology incorporates a multi-criteria analysis based on seven critical parameters: geomorphology, slope, drainage density, fault density, land use, lithology, and soil types. Each parameter was weighted using the AHP technique to quantify its relative influence on groundwater accumulation. Subsequently, areas were classified into zones of varying groundwater potential, ranging from ‘very poor’ to ‘excellent’. Field verification was conducted to validate the model’s results, demonstrating its effectiveness. Specifically, 80% of the 22 drilled wells in ‘good’ potential zones were found to exhibit reliable performance and sustainability. In contrast, wells located in areas classified as ‘poor’ potential zones were non-performing. These findings highlight the practical reliability of the AHP-GIS methodology in delineating groundwater-rich areas and its potential application in strategic water resource management. Moreover, the results reinforce the utility of this approach in addressing water scarcity challenges prevalent in arid and semi-arid regions. By accurately mapping groundwater concentration zones, this method offers a valuable tool for resource planners. The study also emphasizes its broader implications, including drought risk mitigation, particularly in regions where sustainable water management is critical for economic and environmental resilience.
REFERENCES (76)
1.
Abdo H.G., Vishwakarma D.K., Alsafadi K., Bindajam A.A., Mallick J., Mallick S.K., Hysa A. 2024. GIS-based multi-criteria decision making for delineation of potential groundwater recharge zones for sustainable resource management in the Eastern Mediterranean: A case study. Applied Water Science, 14(7), 160.
2.
Adiat K.A.N., Nawawi M.N.M., Abdullah K. 2012. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool – a case of predicting potential zones of sustainable groundwater resources. Hydrogeol. J., 440, 75–89.
3.
Agarwal E., Agarwal R., Garg RD., Garg P.K. 2013. Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Syst. Sci., 122, 887–898.
4.
Agarwal R., Garg P.K. 2016. Remote sensing and GIS based groundwater potential and recharge zones mapping using multi-criteria decision making technique. Water Resour. Manag., 30, 243–260.
5.
Andualem T.G., Demeke G.G. 2019. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Hydrogeol. J., Regional Studies, 24, 100610.
6.
Arabameri A., Pal S.C., Rezaie F., Nalivan O.A., Chowdhuri I., Saha A., Moayedi H. 2021. Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. Hydrogeol J., Regional Studies, 36, 100848.
7.
Aris Y. 1994. Études tectonique et microtectonique des séries jurassiques à plio-quaternaires du constantinois central (Algérie Nord-Orientale): caractérisation des différentes phases de deformation. Doctoral dissertation, Nancy 1.
8.
Asadi S.S., Vuppala P., Reddy M.A. 2007. Remote sensing and GIS techniques for evaluation of groundwater quality in municipal corporation of Hyderabad (Zone-V), India. International Int. J. Env. Res. Pub. He., 4(1), 45–52.
9.
Askari G., Pour A.B., Pradhan B., Sarfi M., Nazemnejad F. 2018. Band ratios matrix transformation (BRMT): a sedimentary lithology mapping approach using ASTER satellite sensor. Sensors, 18(10), 3213.
10.
Becker A., Heijnen L.J., Bauer W., Willemsen A. 2011. The extraction of hydro-geothermal energy from fault controlled systems. Nederland: Le Nationaal Congres Bodemenergie Utrecht.
11.
Benabbas C. 2006. Évolution Mio-Plio-Quaternaire des bassins continentaux de l’Algérie nord orientale: Apport de la photogéologie et analyse morpho structurale. Grands travaux d’aménagement et mouvements de versant dans la région nord de Constantine (Algérie Nord-Orientale). Doctorat d’état, Constantine, 245 p.
12.
Bhakta S., Barui I., Ghosh K. 2024. Identification of groundwater potential zones and its relation to settlement and agriculture: a study in Taraphini river basin, West Bengal, India. Sustainable Water Resources Management, 10(2), 91.
13.
Bhunia GS., Samanta S., Pal DK., Pal B. 2012. Assessment of groundwater potential zone in Paschim Medinipur District, West Bengal – A meso-scale study using GIS and remote sensing approach. Assessment, 2(5), 41–59.
14.
Bouillin J.P. 1977. Géologie alpine de la Petite Kabylie dans les régions de Collo et d’El Milia (Algérie). Doctoral dissertation, Toulouse.
15.
Bouklab M., Bougherira N., Djabri L., Vanclooster M., Kadir M. 2022. Fuzzy analytical hierarchy process for groundwater potential mapping in a Mediterranean catchment: the case of the Medjerda catchment in northeast Algeria. Arabian Journal of Geosciences, 15(19), 1561.
16.
Brun S.E., Band L.E. 2000. Simulating runoff behavior in an urbanizing watershed. Computers, environment and urban systems, 24(1), 5–22.
17.
Butler M., Wallace J., Lowe M. 2002. Ground-water quality classification using GIS contouring methods for Cedar Valley, Iron County, Utah. Digital mapping techniques, 207.
18.
Chadi M. 1991. Géologie des monts d’Ain M’lila (Algérie orientale). Doctoral dissertation, Université Henri Poincaré-Nancy 1.
19.
Chandra S., Rao V.A., Krishnamurthy N.S., Dutta S., Ahmed S. 2006. Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol. J., 14, 767–776.
20.
Dali N., Ziouch O.R., Dali H., Daifallah T., Cherifa B., Sara H. 2023. Remote sensing, and (GIS) approach, for morphometric assessment and sub-watershed prioritization according to soil erosion and groundwater potential in an endorheic semi-arid area of Algeria. Arabian Journal of Geosciences, 16(1), 95.
21.
Das S., Mukherjee J., Bhattacharyya S., Patel P.P., Banerjee A. 2022. Detection of groundwater potential zones using analytical hierarchical process (AHP) for a tropical river basin in the Western Ghats of India. Environmental Earth Sciences, 81(16), 416.
22.
Derdour A., Abdo H.G., Almohamad H., Alodah A., Al Dughairi A.A., Ghoneim S.S., Ali E. 2023. Prediction of Groundwater Water Quality Index Using Classification Techniques in Arid Environments. Sustainability, 15(12), 9687.
23.
Derdour A., Bouanani A., Kaid N., Mukdasai K., Algelany A.M., Ahmad H., Ameur H. 2022. Groundwater Potentiality Assessment of Ain Sefra Region in Upper Wadi Namous Basin, Algeria Using Integrated Geospatial Approaches. Sustainability, 14(8), 4450.
24.
Ferozur R.M., Jahan C.S., Arefin R., Mazumder Q.H. 2019. Groundwater potentiality study in drought prone barind tract, NW Bangladesh using remote sensing and GIS. Groundwater for Sustainable Development, 8, 205–215.
25.
Fohrer N., Haverkamp S., Eckhardt K., Frede H.G. 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7–8), 577–582.
26.
Ghosh P.K., Jana N.C. 2018. Groundwater potentiality of the Kumari River Basin in drought-prone Purulia upland, Eastern India: a combined approach using quantitative geomorphology and GIS. Sustainable Water Resources Management, 4, 583–599.
27.
Guemmaz F., Neffar S., Chenchouni H. 2020. Physicochemical and bacteriological quality of surface water resources receiving common wastewater effluents in drylands of Algeria. Water Resources in Algeria-Part II: Water Quality, Treatment, Protection and Development, 117–148.
28.
Gumma M.K., Pavelic P. 2013. Mapping of groundwater potential zones across Ghana using remote sensing, geographic information systems, and spatial modeling. Environ. Monit. Assess., 185(4), 3561–3579.
29.
Hadjem R. 2010. Les pricipales caractéristiques géologique, pétrographiques, minéralogiques et gitologiques des formations gréseuses du flysch numidien du Nord-est Algerien. Doctoral dissertation, Annaba.
30.
Ibrahim-Bathis K., Ahmed S.A. 2016. Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. The Egyptian Journal of Remote Sensing and Space Science, 19(2), 223–234.
31.
Jaiswal R.K., Mukherjee S., Krishnamurthy J., Saxena R. 2003. Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development. An approach. Int. J. Remote Sens., 24(5), 993–1008.
32.
Jasrotia A.S., Kumar A., Singh R. 2016. Integrated remote sensing and GIS approach for delineation of groundwater potential zones using aquifer parameters in Devak and Rui watershed of Jammu and Kashmir, India. Arab. J. Geosci., 9, 1–15.
33.
Kaliraj S., Chandrasekar N., Magesh N.S. 2014. Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab. J. Geosci., 7, 1385–1401.
34.
Krishnamurthy J., Venkatesa Kumar N., Jayaraman V., Manivel M. 1996. An approach to demarcate ground water potential zones through remote sensing and a geographical information system. Int. J. Remote Sens., 17(10), 1867–1884.
35.
Kumar A., Pramanik M., Chaudhary S., Negi M.S., Szabo S. 2022. Geospatial multi-criteria evaluation to identify groundwater potential in a Himalayan District, Rudraprayag, India. Environment, Development and Sustainability, 1–42.
36.
Lahondère J.C. 1987. Les séries ultratelliennes d’Algérie nord-orientale et les formations environnantes dans leur cadre structural. Doctoral dissertation, Toulouse.
37.
Lee J.G., Heaney J.P. 2003. Estimation of urban imperviousness and its impacts on storm water systems. J. Water Res. Pl., 129(5), 419–426.
38.
Madrucci V., Taioli F., de Araújo C.C. 2008. Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil. J. Hydrol., 357(3–4), 153–173.
39.
Magesh N.S., Chandrasekar N., Soundranayagam J.P. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front, 3(2), 189–196.
40.
Maizi D., Boufekane A., Busico G. 2023. Identification of groundwater potential zones using geospatial techniques and analytical hierarchy process (AHP): Case of the middle and high Cheliff basin, Algeria. Applied Geomatics, 15(4), 1005–1017.
41.
Mallick J., Singh C.K., Al Wadi H., Ahmed M., Rahman A., Shashtri S., Mukherjee S. 2015. Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol. Process, 29(3), 395–418.
42.
Milly P.C.D. 1994. Climate, soil water storage, and the average annual water balance. Water Resources Research, 30(7), 2143–2156.
43.
Milly P.C.D., Dunne K.A. 1994. Sensitivity of the global water cycle to the water-holding capacity of land. J. Climate, 7(4), 506–526.
44.
Moss R., Moss G.E. 1990. Handbook of ground water development. Wiley-Interscience, New York, 34–51.
45.
Mukherjee A., Banerjee S. 2009. Rainfall and temperature trend analysis in the red and lateritic zone of West Bengal. J. Agrometeorol., 11(2), 196–200.
46.
Mukherjee A., Patil D. 2013. Appraisal of use pattern in W Prone region F. Journal of Applied Technology in Environmental Sanitation, 3(4), 141–146.
47.
Nagarajan M., Singh S. 2009. Assessment of groundwater potential zones using GIS technique. J. Indian. Soc. Remot., 37, 69–77.
48.
Nag S.K., Kundu A. 2018. Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal. Applied Water Science, 8, 1–13.
49.
Negm A.M., Bouderbala A., Chenchouni H., Barceló D. (eds.) 2020. Water resources in Algeria-Part II: water quality, treatment, protection and development, vol. 98. Springer Nature.
50.
Nsiah E., Appiah-Adjei E.K., Adjei K.A. 2018. Hydrogeological delineation of groundwater potential zones in the Nabogo basin, Ghana. J. Afr. Earth Sci., 143, 1–9.
51.
Ndatuwong L.G., Yadav G.S. 2015. Application of geo-electrical data to evaluate groundwater potential zone and assessment of overburden protective capacity in part of Sonebhadra district, Uttar Pradesh. Environ. Earth Sci., 73, 3655–3664.
52.
Patra S., Mishra P., Mahapatra S.C. 2018. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J. Clean. Prod., 172, 2485–2502.
53.
Prasad R.K., Mondal N.C., Banerjee P., Nandakumar M.V., Singh V.S. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environ. Geol., 55, 467–475.
54.
Rabahi N. 2008. La Série Néritique du Constantinois Central «Massif du Chattabah, Djebel Felten» Lithostratigraphie, Sédimentologie et Caractérisation Hydrogéologique «Région de Constantine». Doctoral dissertation, Université de Batna 2.
55.
Rahman M.A., Rusteberg B., Gogu R.C., Ferreira J.L., Sauter M. 2012. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J. Environ. Manage., 99, 61–75.
56.
Rebouh N., Khiari A. 2022. La Cinématique et l’organisation des structures géologiques dans le Constantinois.
57.
Rebouh N., Oudni A., Khiari A., Benabbas C., Özgür N. 2021. Hydrothermal alteration mapping and structural features in the Ain Smara basin, Constantine (Northeastern Algeria): Contribution of Landsat OLI8 data. Arab. J. Geosci., 14, 1–19.
58.
Rebouh N., Oudni A., Khiari A., Özgür N. 2024. Mapping of Landslide Susceptibility Using Analytical Hierarchy Process (AHP) in the Ain Smara and its Surrounding Areas, Algeria (Northeastern of Algeria). Studies in Science of Science, 42(8), 1–15.
59.
Reddy P.R., Kumar K.V., Seshadri K. 1996. Use of IRS-1C data in groundwater studies. Current Science, 600–605.
60.
Rehman A., Islam F., Tariq A., Ul Islam I., Brian J.D., Bibi T., Al-Ahmadi S. 2024. Groundwater potential zone mapping using GIS and Remote Sensing based models for sustainable groundwater management. Geocarto International, 39(1), 2306275.
61.
Roy S., Hazra S., Chanda A., Das S. 2020. Assessment of groundwater potential zones using multi-criteria decision-making technique: a micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustainable Water Resources Management, 6, 1–14.
62.
Saha P., Ghosh S., Gayen S.K. 2024. Spatial assessment of groundwater potential zones using remote sensing, GIS and analytical hierarchy process: A case study of Siliguri subdivision, West Bengal. Applied Geomatics, 16(3), 751–778.
63.
Saraf A.K., Choudhury P.R. 1998. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens., 19(10), 1825–1841.
64.
Saranya T., Saravanan S. 2020. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment, 6(2), 1105–1122.
65.
Sehgal J. 1998. Red and lateritic soils: an overview. Red and lateritic soils, 1, 3–10.
66.
Sener E., Davraz A., Ozcelik M. 2005. An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeol. J., 13, 826–834.
67.
Singh L.K., Jha M.K., Chowdary V.M. 2018. Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecol. Indic., 91, 24–37.
68.
Thakuriah G. 2023. Geographic information system and analytical hierarchical process approach for groundwater potential zone of lower Kulsi basin, India. Sustainable Water Resources Management, 9(3), 85.
69.
Taylor R.G., Scanlon B., Döll P., Rodell M., Van Beek R., Wada Y., Treidel H. 2013. Ground water and climate change. Nat. Clim. Chang., 3(4), 322–329.
70.
Todd D.K., Mays L.W. 2004. Groundwater hydrology. John Wiley & Sons.
71.
Upadhya R.K., Tripathi G., Đurin B., Šamanović S., Cetl V., Kishore N., Bhardwaj V. 2023. Groundwater Potential Zone Mapping in the Ghaggar River Basin, North-West India, Using Integrated Remote Sensing and GIS Techniques. Water, 15(5), 961.
72.
Vila J.M. 1980. La chaîne alpine de l’Algérie orientale et des confins algéro-tunisiens. These de Doctorat-es-sciences, Universite Pierre et Marie Curie.
73.
Waikar M.L., Nilawar A.P. 2014. Identification of groundwater potential zone using remote sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 12163–12174.
74.
Weng Q. 2012. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ., 117, 34–49.
75.
Yammani S. 2007. Groundwater quality suitable zones identification: application of GIS, Chittoor area, Andhra Pradesh, India. Environ. Geol., 53, 201–210.
76.
Zhou Y., Wang Y., Gold A.J., August P.V. 2010. Modeling watershed rainfall-runoff relations using impervious surface-area data with high spatial resolution. Hydrogeol. J., 18(6), 1413.