Monitoring and analysis of the displacements of slender structures: A case study of the Wroclaw Iglica
 
More details
Hide details
1
Department of Geodesy and Geoinformatics, Wroclaw University of Science and Technology
 
2
Department of Geodesy, University of Agriculture in Kraków
 
 
Submission date: 2025-10-04
 
 
Final revision date: 2025-10-31
 
 
Acceptance date: 2025-10-31
 
 
Publication date: 2025-12-22
 
 
Corresponding author
Robert Gradka   

Department of Geodesy and Geoinformatics, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland
 
 
Geomatics, Landmanagement and Landscape 2025;(4)
 
KEYWORDS
TOPICS
ABSTRACT
The article presents an analysis and comparison of geodetic methods used for the measurement and monitoring of slender structures such as chimneys, towers, cooling towers, and power line poles. Due to their slender geometry and considerable height, these structures are highly sensitive to environmental influences, including wind, temperature variations, and ground settlement. The study discusses the evolution of measurement techniques – from classical tacheometry and levelling, through satellite-based GPS and GNSS systems, to modern terrestrial laser scanning (TLS) and digital photogrammetry. Recent research indicates integrating multiple surveying methods, known as a hybrid approach, guarantees improved accuracy and reliability of measurement results. The measurement of verticality of the Wrocław Iglica, a representative slender structure, is an example of the use of the described methods. Due to its geometry and the conditions in the field, a tacheometric survey was conducted to determine vertical axis deviations under different sunlight conditions. The results confirmed noticeable deflections of the structure’s top throughout the day, demonstrating the influence of thermal factors on its stability. The analysis of both literature and measurement shows that the most effective approach to monitoring slender structures is the integration of data from various geodetic techniques. Such hybrid monitoring ensures a comprehensive assessment of the structural stability and durability of slender constructions over time. The results highlight the importance of continuous geodetic monitoring as a key factor in ensuring the safety and reliability of engineering structures.
REFERENCES (41)
1.
Alkady K., Wittich C.E., Wood R.L. 2023. A novel framework for the dynamic characterization of civil structures using 3D terrestrial laser scanners. Computer Vision & Laser Vibrometry. Springer, Cham, 91–95. https://doi.org/10.1007/978-3-....
 
2.
Beshr A.A.A., Basha A.M., El-Madany S.A., Abd El-Azeem F. 2023. Deformation of high rise cooling tower through projection of coordinates resulted from terrestrial laser scanner observations onto a vertical plane. ISPRS International Journal of Geo-Information, 12(10), 417. https://doi.org/10.3390/ijgi12....
 
3.
Bieda A., Mikrut S. 2017. Zastosowanie skaningu laserowego do pomiaru odkształceń obiektów wysmukłych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 29, 25–38.
 
4.
Breuer P., Chmielewski T., Górski P., Konopka E., Tarczyński L. 2008. The Stuttgart TV Tower ‒ displacement of the top caused by the effects of sun and wind. Engineering Structures, 30 (10), 2771‒2781. https://doi.org/10.1016/j.engs....
 
5.
Chen L., Chang J., Xu J., Yang Z. 2023. Automatic Measurement of Inclination Angle of Utility Poles Using 2D Image and 3D Point Cloud. Applied Sciences, 3, 1688. https://doi.org/10.3390/app130....
 
6.
Czapliński K., Czemplik A., Czerek D. 2018. Wybrane problemy budowy i robót konserwacyjnych iglicy wrocławskiej.
 
7.
Czopik M., Mikrut S., Ćwiąkała P., Bieda A. 2024. Selection of an Algorithm for Assessing the Verticality of Complex Slender Objects Using Semi-Automatic Point Cloud Analysis. Remote Sensing, 16(17), 3173.
 
8.
Dhoolappanavar D., Rao N.R.V., Hulagabali A.M., Dodagoudar G.R. 2024. Wind analysis of tall-reinforced concrete chimney considering the effect of soil–structure interaction. Lecture Notes in Civil Engineering, Springer, 529, 629–641. https://doi.org/10.1007/978-98....
 
9.
Gawałkiewicz R., Skulich M., Szfarczyk A. 2015. Wykorzystanie nowoczesnych technologii geodezyjnych w procesie kontroli pionowości obiektów wysmukłych na przykładzie komina przemysłowego.
 
10.
Głowacki T. 2022. Monitoring the Geometry of Tall Objects in Energy Industry. Energies, 15, 2324. https://doi.org/10.3390/en1507....
 
11.
Głowacki T., Grzempowski P., Sudoł E., Wajs J., Zając M. 2016. The assessment of the application of terrestrial laser scanning for measuring the geometrics of cooling towers. Geomatics, Landmanagement and Landscape, 4, 49‒57.
 
12.
Gocał J. 2010. Geodezja inżynieryjno-przemysłowa. Część 3.
 
13.
Hu Y., Xu W., An Z., Wang G. 2023. High-accuracy measurement of three-dimensional inclinations of power transmission towers using reconstruction model of stereo images. Advances in Civil Engineering. https://doi.org/10.1155/2023/8....
 
14.
Jagielski A. 2020. Podstawy geodezji inżynieryjnej. Część 1 i 2.
 
15.
Jeziorna P. 2020. Rola obiektów artystycznych w przestrzeni publicznej w budowaniu więzi mieszkaniec–miasto na podstawie miasta Wrocławia.
 
16.
Kaartinen E., Dunphy K., Sadhu A. et al. 2022. LiDAR-based structural health monitoring: Applications in civil infrastructure systems. Sensors, 22(12), 4610. https://doi.org/10.3390/s22124....
 
17.
Kamiński W., Matwij W. 2016. Metody pomiaru pionowości wysokich kominów przemysłowych z wykorzystaniem technik geodezyjnych. Geodezja i Kartografia, 65(1), 89–106. https://doi.org/10.1515/geocar....
 
18.
Kijewski T., Kareem A. 2001. Full-scale study of the behaviour of tall buildings under wind. Proc. Health monitoring and management of civil infrastructure systems, SPIE, Bellingham (WA), 441‒450.
 
19.
Knecht A., Manetti L. 2001. Using GPS in structural health monitoring. Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 4328, 122‒129.
 
20.
Kozłowski T., Ligas M. 2014. Analiza możliwości wykorzystania naziemnego skaningu laserowego w ocenie geometrii kominów. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 26, 121–130. https://doi.org/10.14681/afkit....
 
21.
Kregar K., Ambrožič T., Kogoj D., Vezočnik R., Marjetič A. 2015. Determining the Inclination of Tall Chimneys Using the TPS/TLS Laser Scanning, Measurement, 75, 354‒363. https://doi.org/10.1016/j.meas....
 
22.
Li Y., Du Y., Shen X., Wang R. 2014. Comparison of several transmission line tower inclination measurement methods. Hubei Electr. Power, 38, 55–57.
 
23.
Liang Q., Liang S., Peng J., Bian M. 2020. Research on wind resistant monitoring technology of pole-line structure in transmission lines. J. Electr. Power Sci. Technol., 35, 181C186.
 
24.
Lovse J.W., Teskey W.F., Lachapelle G., Cannon M.E. 1995. Dynamic deformation monitoring of tall structures using GPS technology. J. Surv. Eng., 121, 35–40.
 
25.
Łyszkowicz A., Gawałkiewicz R. 2015. Pomiary geodezyjne w kontroli pionowości obiektów budowlanych – studium przypadku komina przemysłowego. Przegląd Geodezyjny, 87(7), 3–8.
 
26.
Ma X. et al. 2023. Intelligent acceptance check for towers of overhead transmission line based on point clouds. IET Generation, Transmission & Distribution. https://doi.org/10.1049/gtd2.1....
 
27.
Makuch M. 2025. Laser scanning in diagnostics of geometric imperfections of hyperboloid cooling towers. Geomatics, Landmanagement and Landscape (GLL). https://doi.org/10.15576/GLL/1....
 
28.
Makuch M., Gawronek P., Mitka B. 2024. Laser scanner-based hyperboloid cooling tower geometry inspection: Thickness and deformation mapping. Sensors, 24(18), 6045. https://doi.org/10.3390/s24186....
 
29.
Matwij W., Lipecki T., Jaśkowski W.F. 2024. Selection of an algorithm for assessing the verticality of complex slender objects using semi-automatic point cloud analysis. Remote Sensing, 16(3), 435. https://doi.org/10.3390/rs1603....
 
30.
Mendis P., Ngo T., Haritos N., Hira A., Samali B., Cheung J. 2007. Wind Loading on Tall Buildings. Electronic Journal of Structural Engineering, 1, 41–54. https://doi.org/10.56748/ejse.....
 
31.
Muszyński Z., Milczarek W. 2017. Application of Terrestrial Laser Scanning to Study the Geometry of Slender Objects. IOP Conf. Ser. Earth Environ. Sci., 95, 42069.
 
32.
Nowak J., Kowalczyk R. 2013. Kontrola pionowości i monitorowanie odkształceń obiektów wysmukłych w praktyce geodezyjnej. AFKiT, 25, 123–134.
 
33.
Pandžić J., Pejić M., Božić B., Erić V. 2016. TLS in Determining Geometry of a Tall Structure, Engineering Geodesy for Construction Works, Industry and Research. Proceedings of the International Symposium on Engineering Geodesy (SIG 2016), Varaždin, Croatia, 20–22, May 2016, 279–290.
 
34.
Park H.S., Sohn H.G., Kim I.S., Park J.H. 2008. Application of GPS to monitoring of wind-induced responses of high-rise buildings. The Structural Design of Tall and Special Buildings, 17, 117–132.
 
35.
Pleterski Ž., Rak G., Kregar K. 2024. Determination of chimney non-verticality from TLS data using RANSAC method. Remote Sensing, 16(23), 4541. https://doi.org/10.3390/rs1623....
 
36.
Prószyński W., Kwaśniak M. 2015. Metody integracji pomiarów geodezyjnych i sensorowych w monitoringu obiektów inżynierskich. Geodezja i Kartografia, 64(2).
 
37.
Sierpiński K. et al. 2019. Wykorzystanie nowoczesnych technologii geodezyjnych w procesie kontroli pionowości obiektów wysmukłych (przykład kominów przemysłowych).
 
38.
Siwiec D., Lenda G. 2022. Integration of terrestrial laser scanning and structure from motion for the assessment of industrial chimney geometry. Measurement, 199, August, 111404. https://doi.org/10.1016/j.meas....
 
39.
Siwiec D., Strojny P., Koźmiński M. 2022. Zastosowanie naziemnego skaningu laserowego i fotogrametrii do pomiaru wysokich kominów przemysłowych. Acta Scientiarum Polonorum, Formatio Circumiectus, 21(4), 59–72. https://doi.org/10.15576/ASP.F....
 
40.
Spadavecchia C., Belcore E., Di Pietra V. 2023. Preliminary test on structural elements health monitoring with a LiDAR-based approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-2/W3, 247–253. https://doi.org/10.5194/isprs-....
 
41.
Vezočnik R., Ambrožič T., Sterle O., Bilban G., Pfeifer N., Stopar B. 2009. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors, 9, 9873–9895.
 
ISSN:2300-1496
Journals System - logo
Scroll to top