Mapping the vulnerability of groundwater and assessing the health risks of deficiencies in essential elements in the Lukunga watershed of Kinshasa city
 
More details
Hide details
1
Ecole Régionale de l’Eau, University of Kinshasa
 
2
Ecole Nationale Supérieure d’Hydraulique de Blida
 
3
University of Kinshasa
 
These authors had equal contribution to this work
 
 
Submission date: 2024-12-12
 
 
Final revision date: 2025-05-21
 
 
Acceptance date: 2025-10-15
 
 
Publication date: 2026-01-29
 
 
Corresponding author
Juvenal Juve Matungila   

Eau potable et Assainissement, Ecole Régionale de l'Eau (University of Kinshasa), Kinshasa, Democratic Republic of the Congo
 
 
Geomatics, Landmanagement and Landscape 2025;(4)
 
KEYWORDS
TOPICS
ABSTRACT
The increasing reliance on boreholes in Kinshasa reflects the ongoing inadequacy of the public water supply, raising concerns about the management of groundwater and the potential health risks connected to aquifer contamination. This study assesses the vulnerability of groundwater in the Lukunga watershed using the GOD method, complemented by a health risk analysis focusing on deficiencies in essential minerals: calcium (Ca) and magnesium (Mg). Hazard quotient (HQd) was applied to evaluate the risk of chronic exposure. Physico-chemical data from 23 water samples (September 2023) supported the generation and validation of vulnerability maps. Integration the GOD model and HQd approach offers a cost-effective and scientifically robust framework, especially suited for data-limited urban settings. The GOD model provided a rapid classification of aquifer sensitivity, while HQd refinement incorporated hydrochemical data to improve exposure risk estimates. The results revealed that nearly 30% of the watershed falls under the ‘very high’ vulnerability category, particularly in downstream areas and along major rivers. The main source of pollution is linked to domestic waste due to poor urban sanitation. Although chemical contamination remains low, the predominant health risk arises from insufficient Ca and Mg levels, with average concentrations of 1.19 mg/L and 1.07 mg/L, respectively. These suggest very soft water and an insufficient daily intake, especially for vulnerable populations. Elevated HQd values indicate potential long-term health consequences, including an increased risk to bone and cardiovascular conditions. This study highlights the urgent need for improved monitoring of groundwater and mineral supplementation strategies to protect public health and ensure the sustainable management of Kinshasa water resources.
REFERENCES (74)
1.
African Water Facility. 2015. Elaboration du schéma directeur pour la gestion intégrée des eaux urbaines (GIEU) de la ville de Kinshasa et étude de faisabilité de la desserte en eau potable de Kinshasa Ouest (Rapport d’évaluation).
 
2.
Afrifa G.Y., Ansah Narh T., Ibrahim K., Loh Y.S.A., Sakyi P.A., Chegbeleh L.P., Yidana S. M. 2023. A Monte Carlo simulation approach for the assessment of health risk from NO₃⁻ N perturbation in groundwater. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808....
 
3.
Aller L., Bennett T., Lehr J.H., Petty R.J., Hackett G. 1987. DRASTIC: A standardized method for evaluating ground water pollution potential using hydrogeologic settings (EPA/600/2-87/035). U.S. Environmental Protection Agency.
 
4.
Arredondo M., González M., Latorre M. 2018. Copper. In: M. Malavolta, E. Mocchegiani (eds.). Trace elements and minerals in health and longevity, vol. 8. Springer, 35–62.
 
5.
Baazi H., Drifi N. 2023. Assessment of groundwater vulnerability using GOD method. International Journal of Innovative Studies in Sociology and Humanities, 8(1), 185–189. https://doi.org/10.20431/2456-....
 
6.
Catling L.A., Abubakar I., Lake I.R., Swift L., Hunter P.R. 2008. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. Journal of Water and Health, 6(4), 433–442.
 
7.
Chenini I., Zghibi A., Kouzana L. 2015. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. Journal of African Earth Sciences, 109, 11–26. https://doi.org/10.1016/j.jafr....
 
8.
Craig L., Lutz A., Berry K.A., Yang W. 2015. Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Science of the Total Environment, 532, 127–137. https://doi.org/10.1016/j.scit....
 
9.
Ducommun R., Zwahlen F., Perrochet P., Dassargues A., Mudry J. 2010. Estimation et cartographie de la vulnérabilité des eaux souterraines en milieu urbain [Doctoral thesis]. Université de Neuchâtel. https://doc.rero.ch/record/203....
 
10.
Egbi D.C., Anornu G.K., Ganyaglo Y.S., Appiah-Adjei K.E., Li S.-L., Dampare B.S. 2020. Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: Sources and related human health risks. Ecotoxicology and Environmental Safety, 191, 110227. https://doi.org/10.1016/j.ecoe....
 
11.
Foster S.S.D. 2000. Assessing and controlling the impacts of agriculture on groundwater from barley barons to beef bans. British Geological Survey.
 
12.
Foster S.S.D., Hirata R. 1987. Groundwater pollution risk assessment: A methodology using available data. WHO-PAHO-CEPIS Technical Report.
 
13.
Foster S.S.D., Hirata R.C.A. 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: W. Duijvenbooden, H.G. Waegeningh (eds.), Vulnerability of soil and groundwater to pollutants, 69–86. TNO Committee on Hydrological Research.
 
14.
Foster S.S.D., Hirata R., Gomes D., D’Elia M. (eds.). 2002. Groundwater quality protection: A guide for water utilities, municipal authorities and environmental agencies. The World Bank.
 
15.
Gianfredi V., Bragazzi N.L., Nucci D., Villarini M., Moretti M. 2017. Cardiovascular diseases and hard drinking waters: Implications from a systematic review with meta-analysis of case-control studies. Journal of Water and Health, 15(1), 31–40.
 
16.
Hamza M.H., Added A., Francés A.R. 2007. Validité de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf (Nord-Est tunisien). Géosciences de surface (Hydrologie–Hydrogéologie), 339(4), 493–505. https://doi.org/10.1016/j.jafr....
 
17.
Holenu Mangenda H. 2016. L’organisation de l’espace urbain de Kinshasa (RD Congo) face à l’omniprésence des décharges d’ordures. Essai d’aménagement écologique urbain [Doctoral dissertation]. Université de Kinshasa.
 
18.
Huan H., Wang J., Teng Y. 2012. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Science of the Total Environment, 440, 14–23. https://doi.org/10.1016/j.scit....
 
19.
Hölting B., Böttcher J., Schräder H.J. 1995. Grundwasser und Umwelt: Hydrogeologie. Springer-Verlag.
 
20.
Jiang L., Lui P., Chen J., Liu Y., Liu D., Qin G., Tan N. 2016. Niveaux de magnésium dans l’eau potable et risque de mortalité par maladie coronarienne: Une méta-analyse. Nutrients, 8(1), 5. https://doi.org/10.3390/nu8010....
 
21.
Ju Y., Mahlknecht J., Le K., Kaown D. 2022. Bayesian approach for simultaneous recognition of contaminant sources in groundwater and surface-water resources. Current Opinion in Environmental Science & Health, 25, 100321. https://doi.org/10.1016/j.coes....
 
22.
Katalayi M.H. 2015. Urbanisation et fabrique urbaine à Kinshasa: Défis et opportunités d’aménagement [Thèse de doctorat]. Université Michel de Montaigne, Bordeaux III. https://thesespublications.bor....
 
23.
Kousa A., Havulinna A.S., Moltchanova E., Taskinen O., Nikkarinen M., Eriksson J., Karvonen M. 2006. Calcium, magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives, 114(5), 730–734. https://doi.org/10.1289/ehp.84....
 
24.
Lateef A.S.A., Fernandez-Alonso M., Tack L., Delvaux D. 2010. Geological constraints on urban sustainability, Kinshasa City, Democratic Republic of Congo. Environmental Geosciences, 17(1), 17–35.
 
25.
Latifi S. 2018. Étude de la vulnérabilité des nappes aquifères de la région de Guelma et évaluation du rôle des STEP dans la protection des eaux [Thèse de doctorat]. Université Badji Mokhtar-Annaba. 159 p.
 
26.
Lelo N. 2008. Kinshasa, ville et environnement. L’Harmattan.
 
27.
Lelo N. 2011. Kinshasa, planification et aménagement. L’Harmattan.
 
28.
Machiwal D., Jha M.K., Singh V.P., Mohan C. 2018. Assessment and mapping of groundwater vulnerability to pollution: Status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.ears....
 
29.
Machiwal D., Jha M.K. 2012. Hydrologic time series analysis: Theory and practice. Springer.
 
30.
Makanzu I.F., Dewitte O., Ntombi M., Moeyersons J. 2014. Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology, 217, 131–139.
 
31.
Maksimović Z., Ršumović M., Djordjević M. 2010. Magnesium and calcium in drinking water in relation to cardiovascular mortality in Serbia. Bulletin of the Technical-Cultural Academy of Serbian Science and Arts, 46(1), 131–140.
 
32.
Margat J. 1968. Vulnérabilité des nappes d’eau souterraine à la pollution (Groundwater Vulnerability to Contamination). Bases de la cartographie (Doc.) 68 SGC 198HYD. BRGM, Orleans.
 
33.
Mendoza G.F., Barmen G. 2006. Groundwater vulnerability assessment in developing countries: A review. Hydrogeology Journal, 14(4), 615–629. https://doi.org/10.1007/s10040....
 
34.
Mfumu K.A. 2016. Assessing nitrate pollution in the Kinshasa groundwater system using a hybrid approach [Thèse de doctorat]. Université Catholique de Louvain. http://hdl.handle.net/2078.1/1....
 
35.
Mfumu K.A., Vanclooster M., Ndembo L.J. 2017. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. Journal of African Sciences, 126, 13–22. https://doi.org/10.1016/j.afje....
 
36.
Moges S.S., Dinka M.O. 2021. Assessment of groundwater vulnerability using the DRASTIC model: A case study of Quaternary catchment A21C, Limpopo River Basin, South Africa. Journal of Water and Land Development, 49(IV–VI), 35–46. https://doi.org/10.24425/jwld.....
 
37.
Mulowayi M.C., Alexander A., Nobert J., Mbudi C.N.U.D. 2021. Modeling groundwater flow under chaotic urbanization constraints in Kinshasa Capital Region (D.R. Congo). Physics and Chemistry of the Earth, Parts A, B, & C, 123, 102985. https://doi.org/10.1016/j.pce.....
 
38.
Murat V., Paradis D., Savard M.M., Nastev M., Bourque É., Hamel A., Lefebvre R., Martel R. 2003. Vulnérabilité à la nappe des aquifères fracturés du sud-ouest du Québec: Évaluation par les méthodes DRASTIC et GOD. Géographie physique et Quaternaire, 57(2), 67–77.
 
39.
Ndembo J. 2009. Apport des outils hydrogéochimiques et isotopiques à la gestion de l’aquifère du Mont-Amba [Thèse]. Université d’Avignon.
 
40.
Nerbrand C., Agréus L., Lenner R.A., Nyberg P., Svärdsudd K. 2003. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft areas with differences in cardiovascular mortality. BMC Public Health, 3(1), 1–9. https://doi.org/10.1186/1471-2....
 
41.
Ntombi M.K., Makanzu I.F. 2006. Réponse du bilan hydrométrique à la dégradation spécifique du bassin versant de Lukunga à Kinshasa. Annales de la faculté des Sciences, Université de Kinshasa, 1, 67–77.
 
42.
OMS. 2017. Directives de qualité pour l’eau de boisson (4e éd. Incorporant le 1er addendum). Organisation mondiale de la Santé.
 
43.
Panagopoulos G.P., Antonako A.K., Lambrakis N.J. 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods. Environmental Monitoring and Assessment, 117(1–3), 243–259. https://doi.org/10.1007/s10661....
 
44.
Rahman A. 2008. A GIS-based DRASTIC model for assessing groundwater vulnerability in shallow aquifer systems. Environmental Modelling & Software, 23(9), 1129–1137. https://doi.org/10.1016/j.envs....
 
45.
Rapant S., Cvečková V., Fajčíková K., Sedláková D., Stehlíková B. 2017. Impact of calcium and magnesium in groundwater and drinking water on the health of inhabitants of the Slovak Republic. International Journal of Environmental Research and Public Health, 14(3). 278. https://doi.org/10.3390/ijerph....
 
46.
Rapant S., Cvečková V., Hiller E., Jurkovičová D., Kožíšek F., Stehlíková B. 2020. Proposal of new health risk assessment method for deficient essential elements in drinking water. Case study of the Slovak Republic. International Journal of Environmental Research and Public Health, 17(16), 5915. https://doi.org/10.3390/ijerph....
 
47.
Rayman M.P. 2012. Selenium and human health. The Lancet, 379(9822), 1256–1268. https://doi.org/10.1016/S0140-....
 
48.
Rylander R., Bonevik H., Rubenowitz E. 1991. Magnesium and calcium in drinking water and cardiovascular mortality. Scandinavian Journal of Work, Environment & Health, 17(2), 91–94.
 
49.
Rosborg I., Kožíšek F. 2020. Drinking water mineral and balance: Importance, health significance, safety precautions (2nd ed.). Springer.
 
50.
Rosborg I., Nihlgård B., Ferrante M. 2015. Mineral composition of drinking water and daily uptake. In: I. Rosborg, F. Kožíšek (eds.). Drinking water minerals and mineral balance, Springer, 25–31. https://doi.org/10.1007/978-3-....
 
51.
Rosenlund M., Berglind N., Hallqvist J., Bellander T., Bluhm G. 2005. Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction. Epidemiology, 16(4), 570–576. https://doi.org/10.1097/01.ede....
 
52.
Rubenowitz E. 1999. Magnesium in drinking water and death from acute myocardial infarction. American Journal of Epidemiology, 149(5), 456–462. https://doi.org/10.1093/oxford....
 
53.
Rubenowitz E., Gösta A., Rylander R. 1996. Magnesium in drinking water and death from acute myocardial infarction. American Journal of Epidemiology, 143(5), 456–462. https://doi.org/10.1093/oxford....
 
54.
Rukmana B.T.S., Bargawa W.S., Cahyadi T.A. 2020. Assessment of groundwater vulnerability using GOD method. IOP Conference Series: Earth and Environmental Science, 477(1), 012020. https://doi.org/10.1088/1755-1....
 
55.
Schwarz E.C., Qu B., Hoth M. 2013. Calcium, cancer and killing: The role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1833(8), 1603–1611. https://doi.org/10.1016/j.bbam....
 
56.
Sulmon C., Gouesbet G., El Amrani A., Couée I. 2006. Environmental signal interactions and plant responses to xenobiotics: The case of the polycyclic aromatic hydrocarbon fluoranthene. Journal of Experimental Botany, 57(3), 449–460. https://doi.org/10.1093/jxb/er....
 
57.
Tam M., Gómez S., González-Gross M. 2003. Possible roles of magnesium on the immune system. European Journal of Clinical Nutrition, 57(10), 1193–1197. https://doi.org/10.1038/sj.ejc....
 
58.
Tiktak A., de Nie D.S., Piñeros Garcet J.D., Jones A., Vanclooster M. 2004. Assessment of the pesticide leaching risk at the Pan-European level: The EuroPEARL approach. Journal of Hydrology, 289(1–4), 0–238. https://doi.org/10.1016/j.jhyd....
 
59.
US EPA. 1989a. Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (HHEM), Part A. Baseline risk assessment (EPA/540/1-89/002). United States Environmental Protection Agency. (Lieu de publication à préciser).
 
60.
US EPA. 1989b. Exposure factors handbook (EPA/600/8-89/43). Office of Health and Environmental Assessment.
 
61.
US EPA. 1997. Exposure factors handbook I, II, III (EPA/600/P-95/002F). United States Environmental Protection Agency.
 
62.
US EPA. 2004. Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (RAGS), Part E. Supplemental guidance for dermal risk assessment (Final). EPA. https://www.epa.gov/risk/risk-....
 
63.
US EPA. 2005. Guidelines for carcinogen risk assessment (EPA/630/P-03/001F). EPA. https://www.epa.gov/risk/guide....
 
64.
US EPA. 2008. Child-specific exposure factors handbook (EPA/600/R-06/096F). EPA. https://www.epa.gov/expobox/ch....
 
65.
US EPA. 2009. Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (HHEM), Part F. Supplemental guidance for inhalation risk assessment (Final) (EPA-540-R-07-002). EPA. https://www.epa.gov/risk/risk-....
 
66.
Van Caillie X. 1997. La carte des pentes (1/20 000) de la région des collines à Kinshasa. Bulletin n°17, Réseau Erosion, ORSTOM, 198–204.
 
67.
Van Caillie X. 1976–1988. La carte géographique et géotechnique de Kinshasa à l’échelle du 1/20.000. Bureau d’Etudes d’Aménagements Urbains, Kinshasa.
 
68.
Van Caillie X. 1983. Hydrologie et érosion dans la région de Kinshasa: Analyse des interactions entre les conditions du milieu, les érosions et le bilan hydrologique (Thèse de doctorat). Laboratoire de Géomorphologie Expérimentale, Département de Géographie-Géologie, KUL, Leuven, Belgique, 553 p.
 
69.
Vuni S.A., Kisangala M.M., Puela P.F., Lelo N.F., Koy K.R., Aloni K.J., Malaisse F., Nzau U.D.M.C. 2022. River contract and the resilience of the population in the face of poor environmental management and the risk of flooding in the Kalamu watershed in the City of Boma (Central Kongo, DR Congo). Geo-Eco-Trop, 46(2), 203–216.
 
70.
Yang C.Y., Chiu H.F., Chiu J.F., Wang T.N., Cheng M.F. 1997. Magnesium and calcium in drinking water and cerebrovascular mortality in Taiwan. Magnesium Research, 10(2), 51–57.
 
71.
Yang C.Y., Chiu H.F. 1999. Calcium and magnesium in drinking water and the risk of death from hypertension. American Journal of Hypertension, 12(9), 894–899.
 
72.
Yang C.Y., Cheng M.F., Tsai S.S., Hsieh Y.L. 2000. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Japanese Journal of Cancer Research, 91(2), 124–130.
 
73.
Yang C.Y., Chang C.C., Tsai S.S., Chiu H.F. 2006. Calcium and magnesium in drinking water and risk of death from acute myocardial infarction in Taiwan. Environmental Research, 101(3), 407–411. https://doi.org/10.1016/j.envr....
 
74.
Zwahlen F. 2004. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Hydrogeology Journal. https://doi.org/10.1007/s10040....
 
ISSN:2300-1496
Journals System - logo
Scroll to top