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Summary

The settlement and compressibility magnitude of the major clayey and marly sediments in 
Tebessa area (N-E of Algeria) depends on several geotechnical parameters such as compression 
Cc and recompression Cs indices. The aim of this study was to investigate the parameters related 
to soil compressibility through tools of statistical analysis, which save time in comparison to 
multiply repeated laboratory tests. The study also adopted the principal component analysis 
(PCA) method to eliminate a number of uncorrelated variables that have no influence on the 
compressibility magnitude, or their impact is insignificant. The highest mean correlation coeffi-
cients were obtained for different contributing parameters. Multiple regression analysis has been 
performed to obtain the best fit model of the output Cc parameter taking into account the best 
correlation by adding parameters as regressors to reach the highest coefficient of regression R2. 
The final obtained model of the present case study gives the best fit model with R2 of 0.92 which 
is a better value compared to different published models in the literature (R2 of 0.7 as maximum). 
The chosen input parameters using PCA combined with multiple regression analysis allow iden-
tifying the most important input parameters that noticeably affect the soil compression index, 
and provide with the best model for estimating the Cc index.

Keywords

compressibility index • geotechnical parameters • principal component analysis PCA • multiple 
regression models

1.	 Introduction	

Fine-grained soils in Tebessa valley North-East of Algeria are widespread throughout 
the province, though the clayey layers and marls present the main geological depo-
sitions. Many surface settlements and differential movements occur under increased 
loadings or can result from the shrinkage swelling phenomenon of the clayey soils 
[Berrah et al. 2018, Berrah et al. 2021]. As is said in the literature, consolidation settle-
ment occurs in saturated or near-saturated fine-grained soils due to volume change 
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caused by load-induced squeezing out of water from the pore spaces over a relatively 
long period of time, and is followed by secondary compression [Barron 1948, Duncan 
1993, Huang and Zhao 2021, Sivakugan and Ameratunga 2021]. This can be a hazard 
in semi-arid regions, where large vertical displacements of soil cause damages observed 
in different structures [Mola Abasi et al. 2016]. Therefore, knowledge of compression 
index is very important, because it supports designing all shallow foundations, under-
ground structures and deep excavation where the compressibility magnitude may 
be estimated directly or indirectly using the laboratory tests and empirical equation 
models. Several equations have been formulated in order to predict the compressibility 
index and potential using simple geotechnical parameters under sophisticated model-
ing techniques such as regression analysis, multiple linear regression, artificial neural 
networks, and Bayesian probabilistic approach [Sousa 2007, Yasser and Hosam 2019, 
Mandhour 2020]. The empirical relationships and correlations between soil parameters 
have been used for a  long time in geotechnical engineering practice with good reli-
ability.

Several researchers have tended to correlate compression index with various soil 
parameters and index properties in terms of single and multiple regressions (such as 
liquid limit, plastic limit, plasticity index, water content, void ratio, etc.), but most of 
these investigations were specific to regional clays, so due to varying soil properties 
these correlations are cannot be generalized and have some limitations [Skempton 
1944, Nishida 1956, Yamagutshi 1959, Azzouz et al. 1976, Bowles 1989, Solanki et al. 
2008, Park and Lee 2011, Kalantary and Afshin 2012, Widodo and Abdelazim 2012, 
Arpan and Sujit 2012, Sari and Firmansyah 2013, Bryan et al. 2014, McCabe et al. 
2014, Nesamatha and Arumairaj 2015, Kumar et al. 2016]. Since the existence of soil 
differs from place to place due to geological origin, the regional empirical correla-
tions proposed in the literature may be useful for obtaining quick estimations of the 
compression index.

The following research paper aims to use the data set of 118 undisturbed samples 
collected from Tebessa province and tested in the public laboratory to obtain physi-
cal properties such as moist and dry unit weight (γd, γh), water content (w), degree 
of saturation (Sr), fine fraction under 0.08 mm, initial void ration (e0), liquid limits 
(WL), plasticity index (IP), specific gravity (Gs), the mechanical properties such as the 
preconsolidation pressure (Ps) and indices of compressibility Cc and Cs measured in 
oedometer tests. First the matrix data has been analyzed using a combination of statis-
tical tools and approaches proceeding with general statistics, then the principal compo-
nent analysis PCA was investigated to reduce a large set of variables to a small set that 
still contains most of the information of the large set. Finally, the significant variables 
were used with multiple regression analysis to find the best fit models that allow the 
estimation of engineering compression index Cc of soils. The final model proposed in 
this research work may save time, as well as money, and serve the public laboratory as 
a fast tool for predicting the compression index through indirect methods.
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2.	 Methods	and	materials	

2.1.	Principal	component	analysis	

The Principal Component Analysis (PCA) is one of the best-known multivariate analy-
sis techniques, also known as eigenvector analysis for removing the adverse effects of 
collinearity while summarizing the main aspects of the variation in the regressor set 
[Draper and Smith 1981, Chatterjee and Price 1991, Borůvka et al. 2005, Jolliffe 2016]. 
Principal components (PC) are uncorrelated and ordered so that the first few retain most 
of the variation present in all the original variables. The number of the PC is based on 
the Kaiser’s values (variances) higher than 1 [Jolliffe 2002]. The results are represented 
by circles of correlations which represent the projections of the variables on the first 2 
components, a variable that is projected near the circle and close to a principal axis is well 
represented on it. The PCA has been used in several other soil parameters investigation 
[Kariuki 2004, Kariuki et al. 2006, Chang et al. 2001], when one has a large number of 
dimensions. In such cases one needs to have some mathematical means of ascertain-
ing the degree of variation in the multivariate data along different dimensions. This is 
achieved by looking at the eigenvalues. An eigenvalue can be understood as indicating 
the length of the axis, while the eigenvector specifies the direction of rotation. With the 
PCA technique the number of variables can be reduced and the relations among input 
variables eliminated by developing a set of new variables that are linear functions of the 
original variables. The number of new variables will not exceed the original number.

Table 1. Summary statistics of 118 analyzed data of the studied soil

Variable Observations Obs. with 
missing data

Obs. without 
missing data Minimum Maximum Mean Std.  

deviation

γd (kN/m3) 118 0 118 14.100 20.200 16.951 1.273

γh (kN/m3) 118 0 118 17.300 21.900 19.733 1.022

W % 118 0 118 8.430 32.300 19.292 4.502

FF < 0.08 mm 118 0 118 61.200 98.500 88.297 9.662

WL % 118 0 118 33.000 83.000 52.568 10.304

IP% 118 0 118 16.000 60.000 33.686 8.079

e0 118 0 118 0.355 1.066 0.653 0.144

Cs 118 0 118 0.005 0.184 0.065 0.039

Cc 118 0 118 0.012 0.427 0.194 0.103

Pc (KPA) 118 0 118 12.000 360.000 178.292 53.330

Gs 118 0 118 2.657 2.790 2.709 0.024

Sr % 118 0 118 52.000 100.000 81.669 11.493
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Descriptive analysis of all data sets collected from Tebessa area was performed by 
classical statistics, determining the minimum and maximum values, and calculating 
the values of mean and the standard deviation presented in Table 1.

In this first step statistical tests were carried out to give a  general overview and 
present as many as possible parameters that are known to have any relationships with 
the compression index Cc of any clayey soil samples of the studied area. These variables 
are chosen as independent variables such as preconsolidation pressure (Pc), degree of 
saturation (Sr), the specific gravity (Gs), dry and wet unit weights (γd, γh), water content 
(w), plasticity index (IP), liquid limit (WL), the fine fraction (Ff) in % < 80µm, initial 
void ration (e0) and the recompression index (Cs).

2.2.	Application	of	published	empirical	model	

From all models published in the literature, the best fit model that can describe the 
goodness of fit of the compressibility index of the studied soil region is the model of 
Azzouz et al (1976) and Al-khafadji et al. [1992] with an R2 of 0.7 where equations used 
to predict the Cc are based on the initial water content w, initial void ration e0 and the 
liquidity limit WL.

3.	 Results	and	discussion	

3.1.	Statistical	analysis	of	data	samples	

The first result that should be considered here is the correlation matrix. It can be 
observed right away that γd has an important regression with γh (R² = 0.84). Also, both 
indices are negatively correlated with some parameters, such as water content w, the 
limit of liquidity WL, plasticity index IP, void ratio e0, swelling index Cs, and compres-
sion index Cc, but also a noticeably low correlation with the remaining parameters (Pc, 
Gs, Sr). These variables could be removed without any effect on the quality of the results 
(Table 2). In this work, the first eigenvalue equals 5.88, and represents 48.99% of the 
total variability. This means that if the data is represented only on one axis, it will be 
still able to see the percent of the total variability of the data. Each eigenvalue corre-
sponds to one factor, and each factor to one dimension. However, the factor is a linear 
combination of initial variables, and all the factors are uncorrelated (R = 0). The eigen-
values and the corresponding factors are sorted by descending order of percentage of 
the initial variability.

Ideally, the first two or three eigenvalues will correspond to a high percent of the 
variance, ensuring that the maps based on the first two or three factors are a good qual-
ity projection of the initial multi-dimensional Table 1. In this part of the research the 
first two factors allow representing 56% to 63% of the initial variability of the data. This 
is a good result, but still one has to be careful while mapping the interpretation as some 
information might be hidden in the following factors.
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According to Factor Loadings Correlations between variables and factors, and 
the Eigenvalue vectors, the variables with negative contribution are the factors F1, F2 
respectively (γd, γh, e0, Cc, Gs), the other factors represented by (w, Ff (%) < 0,08 mm, 
WL, IP, Cs, Pc, Sr) have a positive contribution in this analysis. It is important to notice 
the high and strong correlation between the parameter WL and IP, also the good corre-
lation between Cc and (e0, Cs, IP). The reason for this is that neither the position of 
points in space, nor the degrees of similarity between the parameters are taken into 
account by this method.

The first map is called the correlation circle (below on axes F1 and F2). It shows 
a projection of the initial variables in the factors space. When two variables are far from 
the center: if they are close to each other, they are significantly positively correlated (R 
close to 1); if they are orthogonal, they are not correlated (R close to 0); if they are on the 
opposite side of the center, they are significantly negatively correlated (R close to –1).

When the variables are close to the center, some information is carried on other 
axes, so here any interpretation might be risky. 

Source: Authors’ own study

Fig. 1. Circle of correlation of variables
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The first component was negatively correlated with the variable (γd (kN/m3) and 
γh (kN/m3), slightly negative with the (Gs), and positively correlated with other vari-
ables (Fig. 1). Thus, the effect of the variation factor of the variable (γd (kN/m3) led to 
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a reduction of its values, while the values of other variables increased. This component 
can be interpreted as a response related to the initial soil proprieties, and the standard 
procedure applied to obtain the compressibility value, according to [Horn and Lebert 
1994, Cerato and Lutenegger 2004, Sridharan and Gurtug 2005, Bharat et al. 2020].

3.2.	Effects	of	multicollinearity	in	the	multivariate	analysis	

The effects of multicollinearity in variables occur if there is a  linear relationship 
between them. It is an extension of the simple case of collinearity between two vari-
ables. Multicollinearity creates a  problem in regression analysis when independent 
variables are highly correlated, the relationship between the independent variables and 
the dependent variables is distorted by a very strong relationship between the indepen-
dent variables [Montgomery et al. 2021], rendering our interpretation of relationships 
likely to be incorrect.

By examining the amount of variability in one the independent that is not explained 
by another independent, the multicollinearity of variables can be detected using toler-
ance for each independent variable. Tolerance values with less than 0.1 indicate collin-
earity are used in several methods (linear regression, logistic regression, discriminant 
factor analysis) as a  filter criterion for variables. If collinearity is discovered in the 
regression output, the interpretation of the relationships should be rejected as false 
until the issue is resolved. If a variable has a tolerance lower than the fixed threshold, 
it is calculated by taking into account the variables already used in the model. At the 
same time, the inverse of the tolerance is used in this study as the variance inflation 
factor VIF, and it is more responsive towards numerical variables when checking the 
multicollinearity (Table 3). This issue can be resolved by combining highly correlated 
variables through principal component analysis, or by omitting a variable in the analy-
sis. The PCA leads to obtaining the six highly correlated parameters as shown in the 
correlation circle in Figure 2 and in the scree plot in Figure 3 which displays the factor’s 
number retained in factor analysis (FA) as principal components where the first two 
factors represent 82.80% of the initial variability in the data. 

Table 3. Multicollinearity statistics

  γd  
(kN/m3)

γh  
(kN/m3) W% FF < 0.08 mm WL% IP% e0 Sr

Tolerance 0.212 0.155 0.068 0.666 0.157 0.134 0.095 0.234

VIF 4.725 6.458 14.693 1.502 6.353 7.483 10.520 4.276

It can be observed that the contributed parameters are – as mentioned in the circle 
– divided into three groups (γd,γh), (Ff, WL, IP), (Cc, e0). Eigenvalues obtained from the 
matrix represent how variables in a differential equation affect each other.
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Source: Authors’ own study 

Fig. 2. Correlation circle 

Source: Authors’ own study

Fig. 3. Scree plot of data

γh (kN/m )
3

γd (kN/m )
3

FF %

WL%

IP%

e0

Cc

–1

–0.75

–0.5

–0.25

0

0.25

0.5

0.75

1

–1 –0.75 –0.5 –0.25 0 0.25 0.5 0.75 1

F2
 (1

5.
68

%
)

F1 (67.12%)

Variables (axes F1 and F2: 82.80%)

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F1 F2 F3 F4 F5 F6 F7

Cu
m

ul
at

iv
e 

va
ria

bi
lit

y 
(%

)

Ei
ge

nv
al

ue

Axis

Scree plot



LAnd CLAYeY dePoSItS ComPReSSIBILItY InveStIGAtIon ... 103

Geomatics, Landmanagement and Landscape No. 4 • 2022

3.3.	Multiple	regression	analysis	and	discussion	of	results	

Multiple regression analysis was introduced to derive an equation that can be used 
to predict the compressibility index from known soil physical properties. It is a very 
useful tool in reducing the number of variables involved in the compressible soil 
phenomenon. The variables are reduced to the necessary minimum of factors that can 
adequately explain the variation in compressibility properties of the studied soils. Tests 
were carried out to correlate the compressibility index with a combination of variables. 

The test of Hypothesis in a linear regression model is used to confirm if the coef-
ficients are significant, Figure 4 shows the negative contribution of variables (γh,WL), 
whereas the other factors (e0, Ff, IP, γd) have a positive contribution in this analysis.

For all statistical models shown in Table 4n single or multiple linear regression 
models are satisfactorily fulfilled the F-test. 

Table 4. Different models proposed for the prediction of the compressibility index by the use of 
multiple regression analysis

Goodness of fit statistics

Models Equation ANOVA

1 variable R² Ad. R² Se F P v VIF

Cc = –0.187 + 0.575 ‧ e0 0.81 0.81 0.017 508.07 < 0.0001

2 variables

Cc = –0.069 – 0.005 ‧ γh + 0.55 ‧ e0 0.81 0.81 0.073 253.4 < 0.0001 3.33 3.33

Cc = –0.19 + 0.00017 ‧ γd + 0.58 ‧ e0 0.81 0.81 0.064 251.85 < 0.0001 2.91 2.91

Cc = –0.36 + 0.0025 ‧ Ff + 0.50 ‧ e0 0.87 0.86 0.036 388.79 < 0.0001 1.20 1.20

Cc = –0.25 + 0.002 ‧ WL + 0.49 ‧ e0 0.86 0.86 0.039 376.15 < 0.0001 1.34 1.34

Cc = –0.24 + 0.004 ‧ IP + 0.45 ‧ e0 0.90 0.89 0.035 519.91 < 0.0001 1.41 1.41

6 variables

Cc = –0.3 – 0.01 ‧ γh + 0.01 ‧ γd +  
+ 0.002 ‧ Ff – 0.001‧ WL + 0.004 ‧  
‧IP + 0.4 ‧ e0

0.92 0.92 0.07 226.58 < 0.0001 4.19 3.71 1.49 6.24 7.34 4.35

Notations: 
Cc: compressibility index , γd: dry unit weight in kN/m3 , γh: wet unit weight in kN/m3, W: water content in %, Ff(%) 
< 0.08 mm: fraction fine in %, WL: liquidity limit in %, IP: plasticity index in %, e0: void ratio

The coefficient of determination (R²) has been used as a global statistic to assess the 
fit of the model. However, this value will increase when factors are added as regressors. 
The R² for the obtained model is 0.92, and the equation can be formulated as following:

 Cc = –0.28 – 0.01 γh + 0.01 γd + 0.002 Ff – 0.001 WL + 0.004 IP + 0.4 e0 (1)
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Source: Authors’ own study 

Fig. 4. Standardized coefficients (Cc) 

Source: Authors’ own study 

Fig. 5. Measured Cc vs. predicted Cc
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The coefficients of variables lie in the range of 95% confidence level. The overall tests 
indicated that the variables fulfilled the requirements of the t-test and F-test, A simple 
routine is needed to effectuate tests that can be performed on disturbed engineered 
samples to achieve the same purposes.

The empirical models obtained in the present study include 118 data samples 
compiled from different geotechnical tests for all parameters that appear primarily in 
relation to the prediction of compressibility coefficient from index properties of soils. 
In some cases the proposed empirical models cannot be applied appropriately to all 
soils due to different soil conditions and/or testing procedures. It was hoped that the 
final model would be acceptable and possible to generalize. Figure 5 shows the best fit 
correlation between the predicted and measured compression index.

4.	 Conclusions	

The results of principal component analysis using physical soil parameters as input 
show a strong correlation in the first principal axes, absorbing about 63.57% of the total 
variance. However, using a multicollinearity study provieds with six highly correlated 
parameters or principal components, where the first two factors represent 82.80% of 
the initial variability in the database. PCA allows grouping the best-correlated param-
eters into three categories; the first group is composed of dry and wet unit weight (γd, 
γh), the second consist of Atterberg limits and the percent of fine fraction (Ff, WL, IP), 
and the last group is represented by compression index and the initial void ratio (Cc, 
e0). PCA proved to be useful for the characterization of soils based on their properties. 
The results obtained from the PCA tools were analyzed using the multiple regression 
analysis methods to predict and obtain possible correlations between geotechnical soil 
parameters. The compression index parameter is taken as the output parameter and the 
other variables proved by the PCA analysis that actually affect the output parameter 
were taken to be independent and correlated as input parameters. The multiple regres-
sion is established for developing empirical models to indicate a  reliable assessment 
of the compressibility of the studied clayey soil in Tebessa area. It indicates the best fit 
correlation compared to all other empirical published models in the literature, with 
an R2 of 0.92, reported from the model of wet unit weight and index of plasticity. In 
general, the model can be used for all soil conditions. Combining the two considered 
tools PCA and multiple regression analysis allows to find the best model to predict 
the compression index parameter from several physical properties, multiple regression 
analysis can validate the results and conclusions obtained from the application of PCA 
tool. This methodology of obtaining the model seems to be a useful and powerful tool 
for estimating engineering properties of compressible soils, and it can be applied to 
other research in different engineering parametric correlation problems.
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