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Summary

The study was conducted to assess the quality of shallow groundwater in the Drean plain, with 
a focus on the concentration of heavy metals. The indices employed included the water quality 
index (WQI), heavy metal pollution index (HPI), and metal index (MI). Spatial distribution maps 
of heavy metals, as well as pollution indices, were developed based on twenty samples. The phys-
icochemical parameters, including T, pH, EC, DO, and TDS, were measured using standard tech-
niques. Heavy metals, including iron (Fe), lead (Pb), zinc (Zn), chromium (Cr), manganese (Mn), 
and cadmium (Cd), were analysed through spectrophotometry. The average concentrations of Mn, 
Cr, Cd, and Pb exceeded the World Health Organization (WHO) drinking water standards, with 
respective values of 0.16 mg/L, 0.06 mg/L, 0.28 mg/L, and 0.38 mg/L. According to the water qual-
ity index (WQI), which ranges from 21 to 800, approximately 50% of the water samples was classi-
fied as highly polluted and therefore not recommended for consumption. According to the metal 
index (MI), the average value is 6.77, with 80% classified as highly polluted. The average value of 
the heavy metal pollution index (HPI) was 2201, indicating that the water in the plain is severely 
polluted for consumption, with 100% of the samples classified as unfit for consumption. The study 
underlines the urgency of reducing the health risks to the urban population and recommends 
continuous monitoring of the area to assess the evolution of the pollution.
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1.	 Introduction 

Groundwater, contained in saturated rocks, soil pores, fissures, and crevices, is a vital 
freshwater resource that is crucial for human needs. Approximately one third of the 
global population directly relies on this source for consumption [Badra et al. 2024].

However, human activities generate significant amounts of waste that is composed 
of diverse materials, both biodegradable and non-biodegradable, posing potential risks 
associated with the presence of extremely hazardous substances [Belkoum et al. 2024]. 
Recent years have seen a heightened global awareness of health risks caused by metal 
contamination of the environment. Groundwater pollution from heavy metals has 
become a major concern due to rapid industrialisation and increasing urbanisation in 
several regions worldwide [Bougherira et al. 2023]. Heavy metals, such as manganese, 
zinc, and chromium, show high toxicity and bioaccumulation that can cause severe 
harm to human health and ecological systems, if they exceed certain limits. Others, like 
cadmium and lead, pose risks even at lower concentrations [Chaturvedi et al. 2019].

Management of adverse impacts requires regular assessment of the distribution, 
levels, and potential health risks associated with heavy metals in groundwater. An 
integral aspect of the study concerns the assessment of groundwater contamination 
caused by heavy metals, with heavy metal pollution index (HPI) being a commonly 
used approach in groundwater research [Belkoum et al. 2024].

To evaluate the degree of heavy metal contamination, a  number of indices have 
been suggested, including those created by [Deeksha et al. 2020, Elumalai et al. 2017, 
Fatima et al. 2022]. However, among them, the heavy metal pollution index (HPI), 
water quality index (WQI), and metal index (MI) have been more frequently applied to 
examine heavy metal pollution.

The water quality index emerges as an effective and accessible tool, allowing 
a comprehensive assessment of water quality based on various parameters. Its objective 
is to convert water quality data into understandable and usable information for the 
public, providing a  singular indicator of water quality based on critical parameters. 
In this research, we also employed the metal index (MI) and the water quality index 
(WOI) to complement our assessment.

Although these indices are less frequently mentioned in the literature, they hold 
significant importance in the overall characterisation of groundwater quality. By inte-
grating these indices, our study aims for a  deeper and more comprehensive under-
standing of heavy metal contamination in the region, contributing to a robust scientific 
foundation for the management and prevention of metal pollution. The relevant refer-
ences for this methodological approach include [Deeksha et al. 2020, Elumalai et al. 
2017, Fatima et al. 2022].

The metallic pollution of groundwater has not been explored sufficiently in the 
study area. Despite previous studies of various sources of contamination [Fernández 
et al. 2004, Habiba et al. 2023, Horton 1965], the ambition of this study was to address 
this overlooked issue.

The fundamental objective of this research is to analyse the quality of groundwater, 
with a particular emphasis on heavy metals, from the perspective of pollution indexing 
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using three key indices: the water quality index (WQI), the heavy metal pollution index 
(HPI), and the metal index (MI). 

In order to comprehensively assess the groundwater quality in the study area and 
to identify the areas with different levels of pollution, it is necessary to map the spatial 
distribution of heavy metal concentrations in groundwater.

2.	 Methods 

2.1.	Study area 

The study area is located in the north-eastern Algeria, approximately 600 km east of 
Algiers, near the Mediterranean coast. The precise location of the study area is defined 
by its geographical coordinates at 36°41'00'' north latitude and 7°45'00'' east longitude.
This area includes a plain that connects four distinct wilayas, situated at 73 kilometres 
from Souk-Ahras, 43 kilometres from Guelma, 63 kilometres from El Tarf, and 24 kilo-
metres from the city of Annaba. The study area is integrated into the Seybouse water-
shed, which is divided into three distinct sub-watersheds, namely the upper Seybouse, 
middle Seybouse, and lower Seybouse, as illustrated by Figure 1.

Source: Authors’ own study

Fig. 1.	 Geographic location of study area

More specifically, it is located within the middle Seybouse sub-watershed, travers-
ing the maritime Seybouse sub-watershed coded 14-06, according to the classification 
of National Water Resources [NWR 2019].

The study area is a part of a plain characterised by an alluvial aquifer, mainly compris-
ing the Annaba and the El-Tarf plains. This aquifer is confined by recent and current 
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alluvial deposits, and its notable permeability is primarily fed by contributions from 
the Meboudja and Seybouse rivers [Bounab et al. 2023, Kherici and Messadi 1992]. The 
Mebouja River, which serves as the final tributary to the Seybouse River, forms the hydro-
graphic network of the research area before its discharge into the Mediterranean Sea.

This watercourse facilitates the drainage of Lake Fetzara, the outlet of an endorheic 
watershed spanning 515 km², through a 14 km long drainage channel.

The available rainfall data were collected from the National Water Resources Agency 
(NWRA), covering a  20-year period (2003–2023). The area has a  Mediterranean 
climate, with an average annual temperature of 18.5°C and 615 mm of rainfall.

Using the Thornthwaite formula, the actual evapotranspiration is close to 460.3 
mm, with runoff and infiltration accounting for 12.60% and 12.55% of the total precipi-
tation, respectively.

2.2.	Sampling and analysis 

The test areas, identified as the main industrial zones of the city, are located in the 
maritime Seybouse sub-watersheds. They primarily include the downstream part of the 
Seybouse River, which serves as the drainage axis for the Seybouse watershed.

Industrial effluents, whether untreated or partially treated, are directly discharged 
into the Seybouse River, thereby supplying the watercourse that ultimately flows into 
the Mediterranean Sea east of the city of Annaba.

This worrying situation was highlighted after a concern related to the lack of research 
on the subject. To address this issue, a comprehensive investigation has been undertaken.

Sampling was conducted on 20 wells from the alluvial aquifer of the study area (Fig. 
2). Sampling points were strategically distributed along the downstream part of the 
Seybouse River, its tributaries, urban areas, and industrial zones that could potentially 
be sources of pollution. The sampling campaign took place in May 2023.

In May 2023, groundwater samples were collected from wells situated across vari-
ous industrial zones within the research area. Twenty plastic bottles of one litre each 
were used to collect these samples. Labelled arbitrarily based on their location, the 
samples were preserved refrigerated at 4°C, awaiting laboratory analyses for a maxi-
mum of seven days. 

The positions and elevations of the wells were recorded using the Garmin Stc62 
model of the global positioning system (GPS).

Physical parameters such as temperature, pH, electrical conductivity (EC), dissolved 
oxygen (DO), and total dissolved solids (TDS) were also recorded on-site using a port-
able multiparameter device (HORIBA). Metal ions including iron (Fe), chromium (Cr), 
manganese (Mn), zinc (Zn), lead (Pb), and cadmium (Cd) were also quantified.

These analyses were conducted in the laboratory using the flame atomic absorp-
tion method with a flame atomic absorption spectrophotometer according to the DIN 
38405-D9-2:2008-05 standard.

Each sample was subject to three distinct measurements in order to guarantee 
optimal accuracy. The average values obtained from these measurements constitute 
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2.3.	Groundwater pollution analyses 

The heavy metal pollution index (HPI), the water quality index (WQI), and the metal 
index (MI) were the three indices used to assess the water quality in the research area. 

2.3.1.	 Water quality index (WQI) 

The water quality index was calculated taking into account all physicochemical param-
eters, while the heavy metal pollution index only considered metal concentrations. 

The initial formulation of the water quality index dates back to [Mohan et al. 1996]. 
The WQI is typically used when there is a specific and designated purpose. We took 
into account the WQI for human consumption in our investigation [Rezaei et al. 2017].

	 Q V V
V Vi

n i

s i

=
−
−









100 	 (1)

Source: Authors’ own study 

Fig. 2.	 Location of sample sites 

the final result of this research. Finally, the results of our study, expressed in appro-
priate units, were thoroughly compared with the standards set by the World Health 
Organization [Kherici and Messadi 1992].
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In equation 1, Vi denotes the ideal value for the n-th parameter, while Vn is the 
parameter’s actual quantity. Each parameter’s suggested standard is represented by the 
letter Vs. All parameter standard values were taken from Kherici and Messadi [1992].

For each related parameter in equation 2, the relative weight (Wi) was determined 
by taking the inverse of the recommended standard (Si).

	 W
Si
i

= 1
	 (2)

Lastly, the following equation was used to determine the overall WQI:

	 WQI = ∑WQi i 	 (3)

2.3.2.	 Metal index (MI) 

The metal index (MI) was proposed by Tachi et al. [2023] and later used by Tachi et al. 
[2023], Tandel et al. [2011]. This index can be calculated using the expression given by 
equation 4.
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MAC

=
( )=

∑
Ci

i
i

n

1
	 (4)

In this case, MAC stands for the maximum allowed concentration of each element 
according to the WHO [2017] , while MI stands for the metal index. The concentration 
of each element in the solution is represented by C. Lower water quality is indicated by 
a higher metal concentration in relation to its corresponding MAC value. The warning 
level is set at an MI value greater than 1.

2.3.3.	 Heavy metal pollution index (HPI) 

The heavy metal pollution index was calculated using the weighted arithmetic mean 
method. There were three crucial steps in this process: creating a rating scale for each 
chosen quality characteristic, assigning weights to the selected parameters, and deter-
mining the pollution parameters that form the basis of the index [Tamasi and Cini 
2013].

We used the following equation to calculate HPI:
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The following formula was used in order to calculate Qi, the i-th parameter’s sub-
index: Qi is equal to Wi · n, where n is the total number of parameters considered in the 
calculation and Wi is the unit weight assigned to the i-th parameter.
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where: 
Mi	 –	 the monitored heavy metal, 
Ii and Si	 –	 the ideal and standard values of the i-th parameter. 

The difference between Mi and Ii ignored the negative algebraic sign. The Ii values 
were taken from MAC values of the metals, and Si values were from the standard values 
set by WHO [2017].

3. Results and discussion 

3.1.	Physicochemical parameters 

Table 1 displays the results of the physicochemical analysis based on the standards 
suggested by the World Health Organization [Kherici and Messadi 1992].

Table 1.	 Physicochemical analyses results (sampling date: May 2023)

Site T 
[°C] pH EC 

[µs/sm]
TDS 

[mg/L]
DO 

[mg/L]

P1 23 6.47 1205 1408.4  7.6

P2 22.4 6.59 2940 695.5 8.16

P3 24.8 8.17 2360 694.5 8.02

P4 22.19 7.62 1503 849.9  8

P5 22.4 8.12 1909 4050.36  3.3

P6 21.3 8.3 1545 368.5 7.41

P7 23.7 7.39 2630 479.5 7.25

P8 24.1 7.69 1536 100.5  8.3

P9 18.65 8.88 3320 2222.5 8.45

P10 21.45 8.12 2610 2626.5 8.48

P11 22.6 7.47 1980 695.5 7.87

P12 22.55 7.63 2236 2000.6 8.16

P13 20.31 7.55 3977 7096.9 5.32

P14 20.73 6.99 3645 2658.5 9.05

P15 21.36 8.28 1811 2654.5 8.41

P16 20.68 8.16 2690 695.5 8.48

P17 23.5 7.67 1691 6989.5  5.8
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Site T 
[°C] pH EC 

[µs/sm]
TDS 

[mg/L]
DO 

[mg/L]

P18 24.34 8.21 2336 6998.5 8.16

P19 19.49 8.31 3414 1695 8.11

P20 21.05 7.39 1920 2785.2 9.05

Minimum 18.65 6.47 1205 100.5  6

Maximum  24.8 8.88 3977 7096.9  9.05

Average 22.03 7.63 2363.9 2388.28  8.047

SD 1.63 0.60 781.25 2249.28  0.66

The temperature of the groundwater samples in the Table 1 reached an average of 
22.03°C and vary from 18.65°C to 24.8°C. The pH of groundwater samples ranged from 
slightly acidic to alkaline, with values between 6.47 and 8.88, and an average of 7.63. 
The higher pH levels in groundwater can mitigate heavy metal toxicity. With an aver-
age of 2388.28 µS/cm, the conductivity of samples ranges from 3977 to 2363.9 µS/cm, 
which is exceptionally high. Most of the water samples had conductivity values greater 
than 1000 µS/cm, complying with the WHO standards. There is a  clear correlation 
between the dissolved mineral concentration in the water and the observed electrical 
conductivity (EC). 

High levels of total dissolved solids (TDS) are associated with higher temperatures, 
leading to increased water salinity. Higher TDS values indicate a greater concentra-
tion of both cations and anions in the water. The average TDS in the groundwater 
samples was 2388.83 mg/L, significantly exceeding the TDS limits of 1000 mg/L set 
by [Kherici and Messadi 1992]. These high levels of TDS can be attributed to vari-
ous factors, including anthropogenic activities such as intensive agriculture, irriga-
tion, industrial discharges, and wastewater infiltration. These practices can result 
in elevated TDS levels, thereby compromising water quality and safety for human 
consumption. The extreme TDS values, ranging from 100.5 mg/L (P8) to 7096.6 
mg/L (P13), indicate the extent of contamination and underline the need for effec-
tive water resource management in order to mitigate these adverse impacts on public 
health and the environment. 

The microbial conversion of nitrate to nitrite and sulphate to sulphites is facilitated 
by the depletion of dissolved oxygen in water reservoirs [Kherici and Messadi 1992].

The maximum dissolved oxygen (DO) value of 9.05 mg/L was found at the sample 
site (P20), while the lowest DO value of 3.3 mg/L was found at the sampling site (P5), 
next to a paint company, suggesting a possible organic microbial contamination. Ten 
percent of the samples meet the standards for irrigation water quality, while only one 
percent meet the requirements for drinking water quality.

Table 1.	 cont.
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3.2.	Metal pollution analysis 

The heavy metal concentrations of the study area are summarised statistically in Table 
2. The six heavy metal average concentrations were arranged in the following order: Zn 
< Pb < Cd < Mn < Cr < Fe. 

Figures 3a–3f represent the spatial distribution map using GIS-based inverse 
distance weighting (IDW) technique for the patterns of cadmium (Cd), chromium 
(Cr), manganese (Mn), lead (Pb), zinc (Zn), and iron (Fe).

Table 2.	 Results of metal concentrations [mg/L] values of groundwater samples

Name Fe Zn Mn Cr Pb Cd

Minimum 0.001 0.13  0.0001 0.03 0.13 0.03

Maximum 0.1 0.96 0.4 0.17 0.8 0.55

Average  0.0511  0.5705  0.160505  0.0665  0.3865  0.284

SD  0.02 0.17  0.12 0.03 0.21 0.284

WHO [2017] 0.3 5  0.05 0.01 0.21 0.18

With an average concentration of 0.5705 mg/L, zinc was the highest of the six heavy 
metals under study, according to Table 2. Zinc levels were highest in sample P4 and 
lowest in sample P10 (Fig. 2).

Zinc is a  mineral that is necessary for healthy human growth and development. 
Zinc concentrations below the WHO [2017] threshold are considered safe for irriga-
tion and human consumption.

The concentrations of iron in the studied waters for P4 and P15 were (0.001) and 
(0.1) mg/L, respectively, and all samples complied with the WHO limits for drinking 
water. The distribution of this element is illustrated in (Fig. 3d)

At every location, the levels of lead in the groundwater were higher than the WHO 
thresholds.

The analysis of data from monitoring wells indicates that the lowest concentration is 
found at site P17 (0.13 mg/L), while the highest is at site P5 (0.8 mg/L). Consequently, 
water consumption poses an unacceptable risk. The spatial distribution map in (Fig. 
3d) shows an uneven distribution of lead concentration, highlighting specific areas 
where contamination is particularly concerning. 

The groundwater contamination in research area is caused by the careless disposal 
of solid waste that contains lead, including paints, coloured plastics, and lead-based 
batteries.

According to Table 2, the average chromium concentration in groundwater was 
0.0665 mg/L.

The maximum concentration of Cr (0.17 mg/L) was found at sampling site P17, 
while the lowest value (0.03 mg/L) was found at sampling site P19, which is close to 
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the construction site. All of the samples in our investigation were higher than the 0.01 
mg/L WHO norm for drinking water.

Regarding the spatial distribution, the map in Figure 3b points to a significant vari-
ability in chromium concentration, highlighting specific areas with higher contamina-
tion levels, notably around the (P20) site, and lower levels near the petrol pump (P19).

The groundwater samples collected in the studied area indicate manganese concen-
trations with an average of 0.16 mg/L. This value exceeds the limit of 0.05 mg/L, and 
90% of the analysed samples exceed this standard, as visualised in (Fig. 3c) The Figure 
highlights a notable prevalence of elevated manganese concentrations in specific sites 
of the studied area.

The average cadmium concentration in the region was 0.28 mg/L, with values rang-
ing from 0.03 to 0.55 mg/L. 

The sampling site P3, which is close to the tomato industry, had the greatest concen-
tration of Cd (0.55 mg/L), whereas the location P20, which is close to an industrial 
complex, had the lowest value. The concentrations of all samples that were measured in 
this study exceeded the limit.

Source: Authors’ own study

Fig. 3.	 Spatial distribution of Cd, Cr, Mn, Pb, Zn and Fe (Arcgis)

The zonal distribution analysis of cadmium concentrations in the studied area, as illus-
trated in Figure 3a, reveals a significant correlation between sampling sites with the high-
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est concentrations and their proximity to industrial sources (as observed at site P3 near 
the tomato industry). This observation confirms the predominant influence of industrial 
activities on cadmium contamination in groundwater. Additionally, it is worth noting 
that agricultural practices, including the use of pesticides and fertilisers containing heavy 
metals, can also contribute to groundwater pollution, particularly near urban areas. Thus, 
a comprehensive analysis of urban areas is essential to identify high-risk contamination 
zones and implement preventive measures to protect public health and the environment.

3.3.	Water quality indices 

The concentration of heavy metals, such as Cd, Cr, Fe, Mn, Pb, and Zn, was included in 
the calculation of HPI in groundwater samples collected from the study area.

The HPI value ranged from 121 to 5000 with an average value of 2201 (Table 3). 
Based on the adopted class ranges (Table 4), the HPI can be classified as low (< 100), 
medium (= 100), and high (> 100). In this study, all groundwater samples were heavily 
polluted, with HPI values exceeding 100 (Fig. 4a).

Source: Authors’ own study 

Fig. 4.	 Spatial distribution of: a. heavy metal pollution index (HPI), b. metal index (MI),  
c. water quality index (WQI) (Arcgis)

Furthermore, higher levels of Zn and Pb detected at the locations of monitoring 
wells may explain the observed increases in HPI (Fig. 4a). The classification of all the 
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studied groundwater resources in the high pollution class of the HPI suggests that the 
groundwater is significantly polluted with heavy metals and poses a  risk to human 
consumption.

Table 3.	 Value fluctuations for the metal index (MI), water quality index (WQI), and heavy 
metal pollution (HPI) 

Pollution index Standard/Class No. of samples  
in each class

Standard source 
references

Heavy metal 
pollution index 
(HPI)

< 100 Low
Sobhanarda-Kania  
et al. [2016]= 100 Medium

>100 High 20 

Metal index (MI)

< 0.3 Very pure

Rezaei et al. [2017]

0.3–1 Pure 3

1–2 Slightly affected

2–4 Moderately affected 1

4–6 Strongly affected 8

> 6 Seriously affected 8

Water quality 
index (WQI)

< 50 Excellent water quality 3

Tandel et al. [2011]

50–100 Good water quality 1

100–200 Poor water quality 1

200–300 Very poor water quality 5

> 300 Unsuitable for drinking purpose 10

The water quality index (WOI) calculated in Table 3 ranges from 21 to 800, with an 
average of 382. The calculated WQI values showed that 50% of the collected samples are 
unsuitable for consumption, while the remaining ten samples were classified as highly 
polluted (25%), polluted (5%), and good (5%). Three groundwater samples (15%) were 
determined to high quality (Fig. 4b). The average value of this pollution quality index 
was 382, which is an indication of a highly polluted groundwater.

The calculated average MI values ​​give a mean of 6.77 with a range of 0.36 to 12.64, as 
shown in Table 3. Furthermore, the metal pollution index (MI) classification, distributing 
values into four classes within the six categories, was established as shown in Table 4. 

The results revealed that 80% of samples (16) was severely affected, representing 
40% of the total, while 40% were highly affected, with values ranging from 4 to 6, and 
beyond 6. The remaining four samples were found to contain a moderate amount of 
metals, accounting for 5% of the total samples, while 15% of the samples exhibited 
signs of severe pollution, distributed among two to three samples, respectively.
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The calculated average value of 6.77 for the entire area indicates a  serious metal 
pollution.

Table 4.	 Evaluation of heavy metal pollution, HPI, MI and WQI value

Indices HPI WQI MI

Minimum 121 21 0.36

Maximum 5000 800  12.64

SD 2201 382 6.77

4.	 Conclusion 

The results of this study indicate that the groundwater in the alluvial aquifer of the study 
area is significantly impacted by industrial discharges. Physicochemical analyses have 
shown elevated levels of total dissolved solids (TDS) and conductivity, exceeding recom-
mended limits. Furthermore, the presence of heavy metals such as lead (Pb), chromium 
(Cr), manganese (Mn), and cadmium (Cd) was detected, with average concentrations of 
0.38 mg/L, 0.06 mg/L, 0.16 mg/L, and 0.28 mg/L respectively, exceeding WHO guide-
lines for water quality. Spatial analysis using GIS-based techniques has revealed different 
distributions of heavy metal concentrations, highlighting specific areas with elevated 
contamination levels, often associated with industrial and urban activities. The preva-
lence of heavy metal pollution poses substantial risks to both the environment and public 
health, calling for urgent intervention and remediation measures.

The assessment of heavy metal pollution using indices such as HPI, MI, and WQI has 
justified a high level of concern, with average values of 2201.6, 77, and 382 respectively, 
indicating widespread contamination. In terms of water quality indices, only 5% of the 
samples were classified as satisfactory based on WQI, while 15% were classified as having 
a low level of pollution, considering both the level of contamination and the MI.

This study underlines the urgent need for corrective measures to mitigate metal 
contamination in groundwater resources in the Drean plain, in order to ensure the 
safety and quality of drinking water for its residents. These results highlight the need 
for urgent action to mitigate heavy metal contamination and ensure access to safe 
drinking water. This could involve measures such as controlling sources of industrial 
pollution, improving agricultural practices, and implementing appropriate water treat-
ment technologies to reduce heavy metal concentrations in groundwater sources. 
However, achieving these improvements will require coordinated efforts and efficient 
management practices.
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