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Review of DTM derivatives most used in Digital 
Soil Mapping
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Summary

Digital Soil Mapping (DSM) is a subdiscipline of pedology, where soil cover is modelled through 
use of spatial – temporal relations between environmental covariates and soil. The process of 
quantitative terrain description used in DSM is called terrain parametrization, where terrain 
attributes (morphometric factors, Digital Terrain Model derivatives) are the most used pred-
icators. Terrain parameterisation was used as a tool in the hydrological survey workshop long 
before computers had been in use. With the development of digitisation, it also began to be used 
to determine selected soil attributes, which was greatly facilitated by GIS applications. A signifi-
cant breakthrough in the importance of terrain attributes in the creation of soil maps and models 
took place with the formalisation of rules for digital soil mapping. Literature describes over 50 
indices, although only a few of them are commonly applied. This applies to single soil attributes 
as well as more advanced implementations in more sophisticated models such as artificial intel-
ligence algorithms. The aim of the following article is to present the main components of DSM 
and to describe characteristics of the most commonly derivatives of DTM applied there, also 
refers to several examples of the use of terrain parameters in the context of DSM in terms of the 
resolution of the elevation model used.
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1. Introduction

Since ancient times, soil has been considered a substrate for plants, and its depth and 
layers have been classified in many ways [Strzemski 1957]. Due to advances in chem-
istry, geology, and petrography, at the turn of the18th and 19th centuries petrographic 
geological soil analysis was initiated. The genetic approach was initiated by a Russian 
geologist and soil expert Dokuczajew (1846–1903), who in 1877 commenced 
his work on the theory of climatic zoning of soils in the northern hemisphere. As 
a result of this work, he distinguished five basic soil-forming factors (parent material, 
climate, biota, topography, and time), formalised the soil definition and marked the 
observed layers of soil with letters. Dokuczajew shaped the genetic approach to soil 
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science for dozens of years to come [Kowalkowski 1960, Kuźnicki et al. 1979]. The 
founding father of Polish soil science, Sławomir Miklaszewski, in his 1912 publica-
tion „Soils in Poland” wrote about “preponderant factors” in soil-forming: „Each soil, 
irrespective of its geographic location, was formed by weathering of exposed rocks 
of certain kinds; thus, being a product of orohydrographic, climatic and geological 
conditions of the country where it is found. Identical causes yield identical results”. It 
was only in 1941 that a publication by a Swiss soil expert Hans Jenny resonated with 
a global audience. This work specified a general mathematical relationship combin-
ing the observed soil properties with independent factors determining soil-forming 
processes: 

s = f (cl, o, r, p, t, ...),

where:
s	 – soil properties,
cl	 – regional climate,
o	 – organisms,
r	 – relief,
p	 – parent material,
t	 – time.

This form of the function of spatial reasoning about soils is still used nowadays. 
The aim of this article is to present Digital Terrain Models derivatives in the context of 
Digital Soil Mapping assumptions, and to show a few examples of their differentiated 
use in soil models with machine learning algorithms.

2. Digital Soil Mapping

DSM is creation of soil maps in a digital form (digital soil cartography), defined as 
a process of creating and filling soil data bases with help of models based on spatial-
temporal relationships existing between various environmental covariates and soil 
[Lagacherie and McBratney 2016]. Nowadays it is a separate sub-discipline of soil 
science, developing dynamically since the beginning of this century (a scheme of DSM 
development by Minasny and McBratney 2016 is shown in Fig. 1). McBratney, Santos 
and Minasny in 2003 defined a formal conceptual framework for DSM, referring to the 
function for spatial reasoning about soils proposed by Jenny. 

Confluence of various factors, such as improving access do spatial data (numerical 
altitude models and satellite imaging), improving computer computation capacity for 
processing high resolution data, development of data-mining tools, GIS technology 
evolution as well as increasingly common geostatistical applications has impacted grad-
ual DSM development. At the same time, a worldwide demand for precise spatial data 
has been increasing and a rejuvenation process in many research centres and institutes 
which contributed to the development of soil science and DSM technology commenced. 
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In the past decade, machine learning, and especially Random Forest technique [Vaysse 
and Lagacherie 2017, Teng et al. 2018, Wadoux et al. 2019a, Ellili-Bargaoui et al. 2020] 
has become one of the main methods of digital soil mapping. Breiman [2001] defines 
Random Forest as a set classifier based on a multitude of random decision trees, apply-
ing a set of binary rules to compute the target variable. In digital soil mapping, since 
information about the soil in a specific location is combined with its prognostic vari-
ables, binary rules relate to the factors determining the soil forming process. The final 
model, according to Stumpf [Stumpf et al. 2016], is arrived at by averaging the results 
for all the single trees at each point on the map. Single trees in the RF model should 
exhibit a range of variation, a result of which are continuous or discrete maps of soil 
properties. Recently, efficacy of Deep Learning methods application for DSM has been 
proven. Comparison of soil properties modelling in a multiscale approach with use of 
artificial neural networks [Behrens et al. 2018] and convolutional neural networks for 
prediction of total organic carbon for two varying soil depths, with uncertain meas-
urement of soil properties [Padarian et al. 2019, Wadoux et al. 2019b] indicates higher 
prediction accuracy for convolutional neural networks, due to their ability to recognize 
contextual information.

Source: Minasny and McBratney [2016]

Fig. 1.	 A diagram illustrating the evolution and confluence of different approaches in digital soil 
mapping
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DSM requires three components: 1) data input (from field observations, labo-
ratory, or statistics); 2) an algorithm based on spatial and non-spatial soil inference 
rules, encompassing mathematical or statistical models based on relationships between 
soil and environmental factors; 3) GIS analysis results, in a form of raster images of 
predicted soil type, along with an estimate of the accuracy of the division contours. 
The authors of the above-mentioned DSM conceptual development [2003] proposed 
introduction of a function of spatial inference about soils, which was called SCORPAN. 
The name derives from the initial letters in the words describing soil-forming factors 
[McBratney 2003]:

SC = f (s, c, o, r, p, a, n) + e

where: 
SC	– the soil type being formed, 
s	 – soil (soil can be used as a factor as it can be predicted on the base of its proper-

ties or the properties of its soil class or other properties), 
c	 – climate, 
o	 – organisms, 
r	 – relief, 
p	 – parent material, 
a	 – age, 
n	 – nodes, 
e	 – spatially corelated residual. 

Such an approach to soil modelling is called a soil-landscape approach, but also 
physiographic or ecological, as it is based on geological, geomorphological and relief 
data as well as soil-water relationship and vegetation cover [Gessler et al. 1995, Lavelle 
2000, Xiong et al. 2014 among others]. A soil-landscape model presents a simplified 
version of soil cover, eliminating soil units of a smaller area, yet it well “assigns” soil 
units to other landscape elements such as terrain features, vegetation cover or lithology 
[Białousz et al.].

Relief is one of the most significant environmental elements as it constitutes 
a  record of exogenous processes, being their result and at the same time affecting 
the course of soil-forming and hydrographic processes as well as on vegetation cover 
(Wieczorek and Żyszkowska, 2011). At the same time, the quality and accuracy of 
currently available altitude data allows a fully accurate quantitative description of the 
examined area.

3. DTM derivatives used in DSM 

The quantitative terrain description process used in digital soil mapping is called param-
eterization of the area. It makes use of morphometric indicators, also called terrain 
attributes or terrain derivatives, and the term DTM derivates is used in reference to 
a numerical terrain model. Primary attributes are values computed directly from DTM, 
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while secondary attributes (also called compound attributes) comprise a combination 
of primary features constituting a base for characterization of spatial variability of the 
processes taking place in the landscape. Among the most popular terrain indicators 
computed from DTM are hypsometry, slope gradient, profile curvature (sinusoidal), 
planar curvature (tangential), the length of surface run-off, flow direction and flow 
accumulation, catchment area and topographic wetness index. While shaded relief is an 
extremely useful parameter aiding detection of terrain features, it is not a classic DTM 
derivative, as its form depends on two extra variables, namely the simulated height of 
the sun above the horizon and its position on the horizon (azimuth). With a sufficient 
DTM resolution and an appropriate choice of parameters simulating height of the sun, 
areas where the terrain is not flat start to show in the shaded relief image. These can 
be microforms, mezzo-forms, sets of micro- or mezzo-forms which may correspond 
to homo- or heterogenic geocomplexity(es) of a specific category [Kot 2009]. It is 
also worth mentioning that shaded relief is used to create topographic maps of vari-
ous planets, e.g., a map of Mercury published in 2016 by NASA (NASA, 2016). DTM 
derivatives are used in the digital modelling of soil water erosion [Pijanowski 2013], 
and as Fijałkowska [2021] proves, the accuracy and detail of elevation data sources has 
a significant impact on the derivative values (map of slopes, map of flow directions, 
map of runoff accumulation).

Hypsometry, being a starting point for other DTM derivatives, is most often repre-
sented by the GRID or TIN models. 

Slope gradient (first derivative) is a value describing the rate of height change in 
the direction of the steepest slope. Slope gradient corelates with the impact of gravita-
tion on surface run-off of water and other materials, and that is why it is of enormous 
significance both in hydrology and geomorphology. It also affects the run-off speed 
vector both on the surface and underground, and hence soil saturation, the degree 
of erosion risk, soil-forming, and many other important processes. Many formulas 
to calculate the slope gradient can be found in literature. These can be classified 
in accordance with the number of nodes, commonly called neighbours, which the 
algorithm uses. Batson [Batson et al. 1975] made use of two neighbouring nodes, 
considering the slope gradient value in two directions only, which in justified cases, 
is the fastest algorithm. An example of such use can be modelling of reflection in 
SLAR radar images (Side-Looking Airborne Radar). While the most used algorithms 
in the 80s were algorithms based on four or eight neighbours, applying the formulas 
proposed by Fleming and Hoffer [1979] (for four neighbours) and (for eight ones) by 
Ritter [1987], since the end of the 90s scientists have also been considering the central 
node, surrounded by the eight neighbouring nodes. An example of such an algorithm 
is Burrough’s formula [Burrough and McDonell 1998], currently used in popular GIS 
applications (Fig. 2a).
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Curvature (second derivative) indicates the rate of first derivative change (slope 
gradient) in a specific direction: profile curvature – perpendicular to the ground; planar 
– parallel to the ground. The values of curvature assume a range of values depending 
on the differences in terrain height, while with absence of plane curvature in a given 
direction the curvature value always stands at zero. Profile curvature shows change in 
surface run-off speed and transport of sediment speed. Planar curvature is a measure of 
topographic convergence and divergence, that is a tendency for the surface run-off to 
concentrate or diverge. In order to identify geomorphological units, both these curva-
tures are used: the planar one to classify terrain forms (valleys, hill tops, edges) and 
a  profile one to differentiate between concave and covex forms [Wilson and Gallant 
2000]. Values for planar and profile curvatues for four schematic terrain forms: moun-
tain (A), valley (B), anticline (C) and hill (D) presents Table 1 [Radło- Kulisiewicz 2019].

Curvatures are usually calculated for each raster cell with use of a fourth order poly-
nomial. The formulas used in ESRI software are presented in Fig. 3a.

Flow direction and flow accumulation (first derivatives) determine the way how 
rainfall water spreads over the area. For each cell in DTM raster, the steepest downward 
slope to a neighbour cell is computed, and its direction is stored in a new raster (flow 
direction raster) as a coded number – the proper azimuth direction (N, NE, E, ES, S, SW, 
W, WN) or No Data in case of the lowest value of all the surrounding cells. A raster that 
for each cell indicates how many cells have their water flow into the cell is the accumu-
lated flow raster. These both derivatives of DTM are used for next second derivatives.

Length of surface run-off (second derivative) is the diatnce between a point in the 
catchment area and the point of water outflow, measured along the flow direction (not 
in a straight line) In GIS software it is computed with use of DTM and the raster of flow 
directions.

Fig. 2.	 (a) A Burrough’s formula for slope (b) marking of cells in surface scanning window with 
ArcGIS algorithm at work
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Source: esri.com

Fig. 3.	 (a) The curvature formulas used in ArcGIS (b) Altitude marked in the nine neighbouring 
pixels; L – raster resolution

Table 1. Curvature values for sample terrain forms

Planar Profile Form shape Planar Profile Form shape

convex 
(+)

convex 
(–)

A convex 
(+)

concave 
(+)

B

concave 
(–)

concave 
(+)

C concave 
(–)

convex 
(–)

D

Source: Radło-Kulisiewicz [2019] modified

Catchment area (second derivative) – is an image of neighbouring but separate 
catchment areas, generated from the image of flow directions obtained on the base 
of slope gradients and curvature. As far back as the 40s of the previous century such 
an approach to quantitative morphology was perceived by hydrologists as a measure 
of landscape divisions and expressed as drainage density, indicating the total length 
of potential run-offs on the examined surface (m · m–²) [Schilacci et al. 2015]. 

Topographic wetness index (also called Compound Topographic Index; second 
derivative) refers to the relative altitude of the examined area. The index value oscillates 

esri.com
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around zero, indicating areas elevated above the average altitude for positive values and 
lowered for negative ones. GIS applications often make use of formula 4 [Wilson and 
Gallant 2000]:

Twi ln as
B

=








tg

where: 
As	 – the area of the local catchment area,
B	 – elevation gradient. 

Shaded relief is defined as land relief, at a given angle of incidence of sunlight and 
a given height of light source. 

Figure 4 shows an example set of DTM derivatives in grid format (GSD = 20 m) for 
the area located in north-eastern Poland, in the Masurian Lake District, in the Olsztyn 
district (area about 100 km2). The processing was performed with the use of ESRI algo-
rithms in the ArcMap application, respectively: Fig. 4b – “slope” function, Fig. 4c – “plan 
curvature”, Fig. 4d – “hill shade” with parameters: azimuth 315o, sunlight position: 60 m 
over the horizon, Fig. 4e – result of formula TWI, Fig. 4f – “flow accumulation”. 

Fig. 4.	 (a) DTM transformations: hypsometry – a starting point for other DTM derivatives, 
(b) slope gradient – a value describing the rate of height change in the direction of the 
steepest slope, (c) planar curvature – the rate of the slope gradient – parallel to the ground, 
(d) shaded relief – land relief, at a given angle of incidence of sunlight and a given height 
of light source, (e) TWI – relative altitude of the examined area, (f) flow accumulation – 
a cumulative count of the number of pixels that naturally drain into outlet (by author)
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Table 2. Selected most common terrain indicators used to model specific soil variables

Authors Soil variables Terrain parameters Resolution 
DTM [m]

Gessler et al. 
[1995]

A-horizon depth, 
solum depth, E-horizon 
presence, or absence

plan curvature CTI 20

Bell et al. 
[1992] Soil drainage classes

slope, slope-curvature ratio, elevation 
above local stream, slope gradient to 
local stream, distance to local stream, 
distance to local drainage way

30

Bell et al. 
[1994]

A-horizon and carbonate 
depth Bell j.c. 

slope gradient, curvature, drainage 
path, specific catchment area, elevation, 
wetness index, stream power, drainage

10

Moore et al. 
[1993]

A-horizon thickness, 
organic matter content, 
pH, extractable P, and silt 
and sand contents

slope and wetness indices 15, 24

Gessler et al. 
[2000] C and soil mass

flow direction, flow accumulation, slope 
gradient, profile and plan curvature, 
CTI

2, 4, 6, 8, 10

Thomas 
et al. [1999] soil types altitude, slope, aspect, profile and plan 

curvature, distance to the thalweg 50

Dobos et al. 
[2000, 2001] soil types PDD, slope, elevation 1000

Source: Dobos et al. [2002] modified

It is worth noting that even before formalising DSM, terrain indicators based on 
DTM were used to model specific soil features, selected indicators are shown in Table 2 
[Dobos et al. 2002]. 

In digital soil mapping terrain features are the most used predicators, used both to 
map specific soil classes and soil cover of whole regions. The methodology applied in 
prognostic research into spatial soil distribution with use of digital terrain analysis and 
multinomial logistic regression was developed for Vestfold County in the south – east 
of Norway [Debella-Gilo et al. 2007]. In the examined area, sixteen terrain features 
had been analysed for their corelations with the soil class under examination, and 
because of these analyses the following terrain features were established to be the most 
significant ones allowing accurate prediction of soil class: hypsometry, the length of 
the surface run-off, topographic wetness index, slope gradient, sun exposition and its 
duration. Basing on the analyses, these terrain indicators were then used as variables in 
logit models for each of the 13 soil classes examined. Logit models provide two kinds 
of statistics: factors of the impact of variables Xi on the examined phenomenon Y and 



M. Radło-Kulisiewicz96

GLL No. 2 • 2021

on probability Pi determining the extent to which the model was adjusted for actual 
relationships [Domański 1998]. The proposed method was estimated as “reliable”, 
except for those soils, whose forming is impacted by other factors, e.g., human activity 
rather than by topography. In 2013, similar research was conducted for the northern 
Egypt regions [Abdel-Kader 2013], making use of terrain attributes and spectral values 
from Landsat images to estimate soil classes with use of logit models. The results of the 
research indicated that the most significant terrain features affecting spatial distribution 
of soil classes are hypsometry, valley depth, ridge, and valley floor curvature as well as 
wetness index. The logit models were the base for development of predictive soil maps.

An interesting aspect concerning use of terrain features in digital soil mapping is 
choice of DTM resolution. In the research conducted in the north of the Czech Republic 
the impact of altitude data resolution on colluvial soil mapping was tested [Penížek 
et  al. 2016]. DTM of 1, 2, 3, 5, 10, 20 and 30-metre resolution was tested and then 
selected derivatives were computed for each variant. In the process of prediction of 
a given soil type presence machine learning was used, among others the following four 
training algorithms: neural networks, boosted tree, random forest and classification 
and regression trees). Model training and validation were based on 111 soil profiles 
examined on a regular sampling grid. The research indicated no significant effect of the 
change in the source data resolution on the accuracy of the model predictions and no 
general trend in the overall soil cover prediction was observed. Interestingly, for each 
of the resolutions tested at least one model exhibited high measurement accuracy and 
the compatibility of training points with reference data exceeded 70%.

Carré [Carré et  al. 2008] used and compared two approaches: “bottom-up” and 
“up-down” to model contours of soil divisions in the 1 : 25,000–1 : 250,000 scale range. 
In the former, soil and terrain features were classified in combination, to obtain taxo-
nomic units which were later generalised to the contours representing map units of 
1 : 250,000 scale. The up-down approach consisted in classification of auxiliary data 
only (hypsometry and wetness index), whose results were aggregated into taxonomic 
units and generalised to the 1 : 250,000 scale. The results obtained confirmed the useful-
ness of the up-down approach to prepare soil maps in a digital form as well as the fact 
that these can be a good alternative to correction of soil data bases already in existence 
but containing geometrical mistakes before applying the bottom-up approach.

4. Summary and conclusions

Digital soil mapping uses advanced and constantly developing artificial intelligence 
methods and its invariably essential element continues to be, also constantly evolving, 
a numerical terrain model and its derivatives. Currently, access do altitude data from 
various sources, which means varying resolution, accuracy, timeliness, spatial range, 
recording format and model is enormous. This results from the advanced technology 
and constantly increasing possibilities of obtaining accurate data in a short time. Use 
of morphometric indicators as proven prognostics in determining specific oil proper-
ties in the profile as well as use of auxiliary data in modelling soil cover in regions 
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has become commonplace in digital soil mapping. It seems that the main task for 
the coming years concerning DSM in addition to raising the spatial resolution of soil 
data worldwide is establishing the standards of accuracy and evaluation of the results 
obtained. The worldwide effects of this standardization in the DSM technology of soil 
mapping or examination of threats to agriculture such as erosion, will consist in not 
only better protection and mode effective use of agricultural areas but also enormous 
financial gains. 
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