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Summary

In recent years, there has been a  common use of automatic precipitation mapping based on 
various interpolation methods. Based on multiple linear regression, the study primarily focuses 
on the entire Cheliff basin (43 750 km²), to search a suitable model for mapping mean annual 
precipitation based on 89 rainfall stations of the observed series (1968/69–2001/2002). Then 
conducts on the upper part of Cheliff basin downstream the Boughzoul dam (4777 km²) using 
11 rainfall stations of annual precipitation series relative to the period 1982/83–2020/2021. The 
same approach was used to map median annual precipitations and quantiles of rain associated 
with the return periods of 5 and 10 years, representing both wet and dry periods. Indeed, this 
work is based on the backward elimination method between the observed annual precipitation 
and four predictors: smoothed altitude (Zs), longitude (X), latitude (Y) and distance from the 
sea (D). The model’s results are satisfactory with a global correlation coefficient for both regional  
(R = 0,89) and local scale (R > 0,81). The final maps obtained are produced after interpolating by  
kriging the residuals. The median annual precipitation map was compared to that elaborated  
by the National Hydraulic Resources Agency (ANRH). The comparison results of 2296 nodes 
of the grid covering the Upper Cheliff basin showed negative deviations on average ‒ 10% and 
reaching ‒ 34% in northern area reflecting a dry trend in precipitation. The final grids of rainfall 
can be integrated into Geographical Information Systems related to many sectors including wa-
ter management and climate change. 
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1. Introduction 

Automatic mapping can serve as a process for estimating precipitation at each loca-
tion within various regions. It is often used to produce precipitations maps for several 
contexts in the world. For example, the geostatistical method well known as kriging, 
and the multiple linear regression method (MLR), are used in various geospatial 
analyses and cartography, particularly for mapping climate parameters. It is of utmost 
important for water resources management to have the necessary knowledge about 
climatic parameters such as precipitation. Geostatistical method does not consider 
the physical characteristics of the region and requires many rainfall stations. It also 
gives inaccurate values on mountain tops [Traboulsi 2010]. However, the MLR method 
considers all the environmental parameters that could be explanatory. Hence [Laborde 
1982, Assaba and Laborde 2000, Laborde et al. 2003, Mebarki 2003, Louamri 2009] 
have used the MLR method by adding the error map interpolated by kriging after vali-
dation of a variogram model. Many studies have been conducted using MLR method, 
Laborde [1982] developed the method by using it to cartography the maximum daily 
precipitation in the north-eastern of France. Chutsagulprom et al. [2022] compared 
three methods (Artificial Neural Networks (ANN), MLR, inverse distance weighting, 
inverse exponential weighting, and ordinary kriging) to cartography a monthly precip-
itation in Thailand and have shown that ANN was less efficient than the other meth-
ods. Several researchers used MLR method across the Mediterranean basin, Assaba 
and Laborde [2000] employed MLR in the region of Corsica in France to cartography 
monthly precipitation. Using same process Zahar and Laborde [2008] have linked 
morphometric parameters to extreme daily precipitation in Tunisia. Bostan et al. [2012] 
compared different interpolation methods in Turkey and concluded that the universal 
kriging method and the MLR method yield very good interpolation results. In Algeria, 
the producing map by A.N.R.H. [1993] of interannual average precipitation on a scale 
of 1:500,000 over a period of 60 years (from 1st September 1921 to 31 August 1960 
and from 1st September 1968 to 31 August 1989), is the first map product in Algeria 
using the numerical method. Using the classical mapping methods, annual precipita-
tions maps were produced by Seltzer [1946] at a scale of 1/1000000 covering the period 
1913‒1938, Gaussen [1948] at a scale of 1/500000 covering the period 1913‒1947 and 
Chaumont and Paquin [1971] at a scale of 1/500000 covering the period 1913‒1963.

Then, several studies have been elaborated on the digital mapping of rainfall in 
Algeria for different purposes. Mebarki [2003] used the MLR method to map the 
median annual rainfall in the north-east of Algeria for the period 1972/73‒1983/84 
and then integrated the product into the estimate of surface runoff after calculating 
the runoff deficit of the basin, which in turn was mapped [Mebarki 2010]. Louamri 
[2009] produced a map of median rainfall in the Seybouse catchment area over the 
period 1969‒1998 by relating the precipitation with smoothing altitude and distance 
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to the sea. Bénina et al. [2006] mapped mean annual, dry ten-year and dry five-year 
rainfall in north-central Algeria. Laborde et al. [2003] produced maps on a monthly 
scale, even for a particular month, for the whole of northern Algeria by relating median 
rainfall and its standard deviation, they based their maps on the interpolation of Gauss 
variables. Other studies, such as those by Benali Khodja et al. [2022] have used the 
geostatistical method (kriging) without integrating environmental parameters to map 
annual rainfall in the Oued Isser catchment area. 

Based on MLR method, the study primarily focuses on the entire Chellif basin  
(43 750 km²), to search an appropriate model for mapping annual average precipitation 
based on 89 rainfall stations across the period from September 1968 to August 2002. 
Then conducted on the upper part of Chellif basin downstream the Boughzoul dam 
(4777 km²) using observed series (1982/83‒2020/21) of 11 stations. The same approach 
was adopted for mapping both of median annual rainfall and annual frequency rainfall 
associated to return periods of 5 and 10 years. 

Indeed, this work is based on the backward elimination method between the 
observed annual precipitation (variables to be explained) and explanatory variables 
using ‘HYDROLAB 2018’ which is a programme developed by Laborde et al. [2018]. 
It should be noted that Chellif basin is one of the richest basins areas in terms of water 
resources in Algeria [ABH-CZ 2004, 2007], with more than 1000 Hm3 · year–1 of 
surface water available [Mebarki et al. 2013]. It provided water for various uses with 17 
dams with a total capacity of 2320 Hm3 [Hallouz et al. 2020]. The management of this 
resource requires a deep knowledge of climatic parameters such as precipitation. 

2. Background, data, and methods  

2.1.	Study	area	

The Cheliff watershed, the largest basin in northern Algeria (43 750 km²), is under the 
influence of a semi-arid climate [Hallouz et al. 2020] (Fig. 1). 

The Upper Cheliff downstream the Boughzoul dam (located in the north-east of 
Cheliff basin) covers an area of 4777 km², bounded by two mountain ranges, the Zaccar 
mountains to the north and the Ouarsenis mountains to the south of the region. The 
relief varies from 250 m (Khemis Miliana plain) to over 1600 m (Ouarsenis moun-
tains). It is characterized by wet, relatively cold winters and hot, dry summers [Fellag 
et al. 2021]. An irrigation system was inaugurated in 1941 and is actually supplied by 
three dams (Ghrib, Deurdeur and Harezza) with a capacity of 280 Hm3, 115 Hm3 and 
75 Hm3 respectively [ONID 2020]. 

2.2. Data 

Relating the regional approach (the Cheliff basin), we used the interannual precipita-
tion data covering the period of September 1968 to August 2002 after selected 89 rain-
fall stations from ABH-Cheliff-Zahrez synthesis study [ABH-CZ 2004, 2007] (Fig. 1). 
Relating the upper Cheliff area in the north-east of Cheliff, we have treated the monthly 
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and the annual precipitation data of eleven (11) rainfall stations from the database of 
the National Hydraulic Resources Agency (ANRH) and the National Institute of Field 
Crops (ITGC). These observed series are covering a common period from September 
1982 to August 2021. 

The Digital Elevation Model (DEM) data, with a 2 km × 2 km mesh covering the 
Cheliff catchment area, were extracted from a satellite image covering the entire African 
continent (EROS Data Center of the U.S. Geological Survey). 

Source: Author’s own study

Fig. 1. Presentation of the study area 
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2.3. Methods 

2.3.1. Data processing 

Mapping on a  regional scale in the Cheliff catchment area is made of mean annual 
rainfall data extracted directly from ABH-Cheliff-Zahrez synthesis study.

The annual rainfall data from the 11 stations of upper Cheliff is fitted to the normal 
root distribution function, also used by Laborde [1995]. Characterised by two parame-
ters, the mean of the square roots of the rainfall series ( p ) and the standard deviation 
of the square roots of the rainfall ( σ p ), the distribution function of the root law is 
given: 

 F x e u du
u

( ) = −
−∞∫1

2 2

2

π  (1)

with: 

u P P
P

= −
σ

where: 
f(x) ‒ the probability that any value of X is less than or equal to x,
u ‒ the standardized Gaussian variable. 

This step was checked using the Anderson test U(%) of Anderson and Darling 
[1952].

The homogeneity of the data from 11 rainfall stations was tested using the sequen-
tial Wilcoxon test [Karl and Williams 1987]. 

Then the rainfall variables are root-transformed ( Pi ), and estimated the frequen-
tial rainfall for each return period: 2-year return period ( p ), the return period of dry 
years ( P PF F0 1 0 2. . and ) and the return period of wet years ( P PF F0 8 0 9. . and ). The 
followed equation is the basis for the frequency values: 

 P u P PF  = ⋅ +( )σ  (2)

The five-year and ten-year frequencies are important in water resource manage-
ment studies, particularly for irrigation water supply [A.N.R.H. 1993, Bénina et al. 
2006, Le Mezo 2013]. 

2.3.2. Multiple linear regression (MLR) 

The multiple linear regression (MLR) used as a statistical approach to produce rain-
fall maps, which is a common method estimates the variable to be explained at each 
observed point from several explanatory variables (X1, X2, X3, …, Xj). The equation is 
given below: 

 yi = a1 X1 + a2 X2 + a3 X3 + ... + ajXj + a0 + ε (3)
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where: aj, a0 and ε are the multiple regression coefficient, the constant and the estima-
tion errors (residuals), respectively. 

The ‘backward elimination’ method, explained by Laborde et al. [2018], involves 
validating the explanatory variables using two validation tests with a  significance 
threshold α = 5%. The first one is the Fisher Snedecor test (F test), which consider-
ing that the global correlation coefficient (R) is significant if the variance explained is 
significantly greater than the residual variance (4). The second test is the Student’s t 
test, considers the partial correlation coefficient (ri) in its lowest absolute value (5). If 
at least one of the two tests rejects the hypothesis of independence, the variable with 
the lowest partial correlation coefficient will be removed and the multiple regression 
repeated with one less explanatory variable.
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where: 
n ‒ sample size,
k ‒ number of explanatory variables.

The above calculations were made using the ‘HYDROLAB’ software [Laborde et al. 
2018].

The relief variables considered as potentially explanatory factors are extracted for 
each station from the data presented in the form of a grid: smoothed altitude (Zs in 
meters), longitude (X Lambert North Algeria given in meters), latitude (Y Lambert 
North Algeria given in meters) and distance from the sea (D given in meters), using 
the ‘Point Sample’ tool on the SURFER 25 software [Surfer® 2023]. These variables 
can affect the rainfall geographical distribution in the northern region of Algeria, as 
defined in previous works [Laborde 1995].

The advantage of the Smoothed Altitude variable is to account the terrain, which 
may have an impact on the movement of air masses [Laborde 1982] and eliminate 
roughness from the digital elevation model [Van Nieuwenhuizen et al. 2021]. The 
spatial resolution chosen (2 km × 2 km) means that landforms likely to influence rain-
fall distribution are correctly represented [Laborde 1995]. 

The distance to the sea variable (D) is estimated, for each point in the selected space, 
by the following equation:
 D X X Y Yi c i c= −( ) + −( )min

2 2  (6)

where: 
Xi and yi – the geographical coordinates of a point in the study area [m],
Xc and yc ‒ the geographical coordinates of points on the coastline [m]. 
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2.3.3. Interpolation of residual values 

According to Laborde [1995], the residuals have a  mean of zero and constant vari-
ance. They vary with spatial position and are readily amenable to interpolation. The 
estimation error map (ε) is obtained from spatial interpolation using the geostatistical 
method (kriging). The best fitted theoretical variogram model is validated using the 
root mean square error RMSE [Willmott and Matsuura 2006] taking the lowest value. 

 RMSE
N

xi yi
i

N
= −( )



=∑1 2

1
  (7)

where: 
xi ‒ the observed variable (error calculated by √P = √Pest + √ε), 
yi ‒ the estimated error variable by the model.

The scheme summarises the method of rainfall mapping applied on upper Cheliff 
(Fig. 2). 

Source: Authors’ own study

Fig. 2. Automatic mapping method 

√Pobserved =√ √ √ε P – Pobserved estimated

Interpolation (Kriging)
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2 2× × ε

Contours
map
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3. Results and discussion  

3.1.	The	mean	annual	rainfall	map	of	the	Cheliff	catchment	area		
(1968/69–2001/02)	

The Table 1 summarises the results after applying multiple regression to 89 stations 
distributed across the catchment. The validated multiple regression model includes 
four explanatory variables (Zs, YZs, Y and X) with an overall correlation coefficient of  
R = 0.89. The latitude (Y) is the most influential factor on the spatial variation of rain-
fall with a partial correlation coefficient (ri = 0.757), followed by longitude (X) with 
a negative partial correlation coefficient (ri = ‒0.597) then the smoothed altitude (Zs) 
with ri = 0.544 and finally the product of smoothed altitude and latitude (YZs) with  
ri = ‒0.26. The two variables longitude (X) and the product of latitude and altitude (YZs) 
have an inverse relationship with the spatial variation of rainfall. The final calculation 
for the mean annual rainfall map is as follow:

pest (mm) = 0.4085 · Zs – 0.000537 ·10–3 · YZs + 0.00280 · Y – 0.00063 · X – 326.20 + ε (8)

Table 1. Multiple regression results for the Cheliff catchment area

Explanatory 
variables ai ri a0 R F Fischer 

Sedecor t Student

Zs [m] 0.4085 0.544

‒326.20 0.89 0.00% 1.60%
YZs [m × m] ‒0.000537 · 10‒3 ‒0.26

Y [m] 0.00280 0.757

X [m] ‒0.00063 ‒0.597

 The parameter ε = Pobs – Pest is the residual of the estimated rainfall at each point of 
the grid. The residuals are mapped using the ‘Ordinary Kriging’ interpolation method, 
whose best validated variogram model is the spherical model with RMSE = 38.72 
(Table 2).

Table 2. Validation parameters of the variogram model (spherical) for the mean annual rainfall 
map (1968/69‒2001/02).

Range [km] 35.57 Partial Sill 1609

Anisotropy 1.913 Angle [°] 162.9

RMSE 38.72 Nugget 0

 In general, the variation in mean annual rainfall in the Cheliff catchment decreases 
from north (700 mm) to south (100 mm) (Fig. 3). The values are higher in the Zaccar and 
Ouarsenis mountains in the north of the basin (400 to 700 mm). However, in the western 
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part of the catchment, mean rainfall varies from 250 mm in the wadi Mina to 400 mm in 
the south of Chlef city. In the south-east, precipitations are low (below the 300 mm curve) 
peculiarly in the upstream part of the Boughzoul dam. According to Capot-Rey [1946], 
the variability of the rainfall depends on the activity of the fronts separating the polar 
and tropical air masses, which diminishes from north Africa towards the Sahara. This 
explains the decrease in the amount of precipitation from north to south. 

Source: Authors’ own study 

Fig. 3. Mean annual rainfall in the Cheliff catchment area (September 1968‒August 2002) 

3.2. Mapping of the annual frequency rainfall in Upper Cheliff region 

On this stage, we mapped the median annual rainfall (PF0,5) and the quantiles of rain 
associated with the return periods of 5 and 10 years (wet periods: PF0,8 and PF0,9 and dry 
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periods: PF0,1 and PF0,2). At the local scale, the number of validated explanatory variables 
decreased compared to the regional scale. The two variables validated by the calcula-
tion programme are smoothed altitude (Zs) and distance to the sea (D), whatever the 
frequency, with the change in the regression coefficients for each explanatory parameter 
ai (a1, a2) and the constant a0 (Table 3). The global correlation coefficient registered for the 
mean roots’ rainfall reached the value of 0.878. For the frequency values R varied from 
0.81 to 0.86. The rainfall is related to altitude (Zs), the main factor influencing rainfall, 
with a value of ri close to the overall correlation coefficient R. The distance from the sea 
(D), second only factor to the Zs, is inversely related to rainfall amount (Table 3).

Table 3. Explanatory variables for frequent annual rainfall estimated by the multiple regression 
method 

Parameter
PF

[mm]
Equation:  PF = a1Zs + a2D + a0

R
ri

F  
[%]

t  
[%]Zs  

[m]
D

[m]

Dry 
period

PF0 1.
0.0061 · Zs ‒ 0.00010 · D + 18.81 0.818 0.817 ‒0.763 1.20 1.00

PF0 2.
0.0066 · Zs ‒ 0.00011 · D + 20.28 0.855 0.854 ‒0.808 0.50 0.50

Median PF0 5.
0.0074 · Zs ‒ 0.00013 · D + 23.08 0.878 0.878 ‒0.836 0.30 0.30

Wet 
period

PF0 8.
0.0082 · Zs ‒ 0.00014 · D + 25.89 0.86 0.859 ‒0.813 0.50 0.40

PF0 9.
0.0087 · Zs ‒ 0.00015 · D + 27.36 0.842 0.841 ‒0.791 0.29 0.23

The finale equations are given by P a Z a D aF s= + + +( )1 2 0
2ε after mapping the 

residuals ε = −P PFobs Fest using the ‘ordinary kriging’ interpolation method with 
linearly variogram model. 

The final maps covering 2296 nodes of the grid, illustrate the median annual rain-
fall, ten-year and five-year dry rainfall, and ten-year and five-year wet rainfall (Fig. 
4, 5, 6). The median rainfall (2-year return period) for the whole region is 413 mm, 
decreasing to 200 mm towards the south and reaching a maximum of 730 mm in the 
north-west (Monts du Zaccar). On the Ech Chaoun mountains, rainfall starts at 450 
mm and exceeds 550 mm on the summits. The curve of 400 mm crosses the Khemis 
Miliana city in the north-west of the region. 

According to Figure 5, the ten-year dry rainfall varies from about 120 mm in the 
south to 500 mm in the north-western mountains of Khemis Miliana city, between 
250 mm and 300 mm in the centre of the region and over 300 mm in the Ech Chaoun 
mountains. The five-year dry rainfall map shows a  slight increase of about 50 mm 
compared to the ten-year dry rainfall (Fig. 6).
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Source: Authors’ own study 

Fig. 4. Median annual rainfall in the Upper Cheliff (north-east of Cheliff basin) (September 
1982‒August 2021)

Source: Authors’ own study 

Fig. 5. Rainfall frequency maps for ten-year dry rainfall (PF0,1) 
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Source: Authors’ own study 

Fig. 6. Rainfall frequency maps for five-year dry rainfall (PF0,2) 

Source: Authors’ own study 

Fig. 7. Rainfall frequency maps for five-year wet rainfall (PF0,8) 
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The spatial variability of rainfall in both wet and dry years is notable. Five-year wet 
rainfall varies from 250 mm in the south-east to 1000 mm in the summits of Zaccar 
mountains in the north, while in the centre of the region it is between 500 and 600 mm 
and over 700 mm in the summits of the Ech Chaoun mountains (Fig. 7). The ten-year 
wet rainfall varies from 300 mm in the south to 1100 mm in the north, a difference of 
about 50‒100 mm compared to the five-year wet rainfall (Fig. 8).

Source: Authors’ own study 

Fig. 8. Rainfall frequency maps for ten-year wet rainfall (PF0,9)

Dry/wet variability, in the north of Algeria, depends on variability in general atmos-
pheric circulation models such as North Atlantic Oscillation (NAO), El Niño Southern 
Oscillation (ENSO), Mediterranean Oscillation (MO) and Western Mediterranean 
Oscillation [Tramblay et al. 2013, Taibi et al. 2017, Boutouatou 2020, Hallouz et al. 
2020, Zerouali et al. 2021]. 

3.3.	Comparison	of	the	median	rainfall	with	the	ANRH	map 

The median annual rainfall results, obtained over the 2296 nodes of the upper Cheliff 
region (period 1982/83‒2020/21), are compared with the median annual of ANRH map 
for a reference period (1921‒1960 and 1968‒1989) [A.N.R.H. 1993]. Figure 9 shows the 
differences in rainfall. An average rainfall deficit of ‒10% is estimated for the period 
1982/83‒2020/21. This is due to the frequency of drought years between 1990 and 2002 
[Taibi et al. 2013, Merabti 2018, Amiar et al. 2020, Mirgol et al. 2022]. Deficits were 



M.-S. Messis, A. Mebarki, A. Merabti80

GLL No. 2 • 2024

observed over most of the study area, reaching ‒ 34% in the north (Fig. 9). However, an 
increase in rainfall was observed in the extreme south of the region.

Source: Authors’ own study 

Fig. 9. Difference [%] in median annual rainfall (September 1982 and August 2021) compared to 
the ANRH map

The results of comparison with ANRH map concord with those found by Mebarki 
[2003] in the North-East of the country (‒10%) over the period 1972/73‒1983/84, as well 
as that detected by Louamri [2009] in the Seybouse basin (‒10%) over the period 1969/70 
to 1997/98. They also agree with the study of Meddi et al. [2014] in the North-West of 
the country (‒13%) over the period 1968‒1998. According to Assaba et al. [2013], surface 
runoff can be reduced by up to 45% with a 15% reduction in rainfall. The results of trend 
agree with the study elaborated by Zerouali et al. [2022], who found that the north-west-
ern region of Algeria was affected by a long-term dry period especially between 1980 and 
2000. However, other methods can be used to diagnose more rainfall series behaviour. 

4. Conclusions 

The method used (multiple regression) to map the biennial (PF0.5), ten-year dry (PF0.1), 
five-year dry (PF0.2), five-year wet (PF0.8) and ten-year wet (PF0.9) rainfall frequencies 
highlight the high relationship between annual rainfall and explanatory environmen-
tal variables. Based on the knowledge of these variables in the form of gridded data, 
rainfall can be estimated for each point in area. The method is applicable across vari-
ous climate conditions, including the Mediterranean region. The method is versatile 
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and can be implemented across different scales by adjusting the explanatory variables. 
However, it is also appropriate to complement this method with other interpolation 
techniques, such as machine learning.

The ‘backward elimination’ method is used to validate, at the regional scale, four 
explanatory variables (smoothed altitude, latitude, longitude and product of smoothed 
altitude and latitude) with different weights. In addition, at the local level, two explana-
tory variables (smoothed altitude and distance from the sea) are validated. The final 
rainfall maps were obtained after mapping the residuals between observed and esti-
mated rainfall using the geostatistical method (ordinary kriging). The mean annual 
rainfall in the Cheliff basin varies from 100 to 700 mm. In the upper Cheliff down-
stream of Boughzoul dam, the median rainfall varies from 200 mm in the south to 
about 730 mm in the north. In comparison with ANRH rainfall map, rainfall deficit, for 
the period 1982‒2021, was estimated to average ‒10%. The results of frequency rainfall 
study, shown that rainfall reaches 1100 mm per year in the summits of mountains in 
the wet years and does not exceed 550 mm in dry years. The spatial variability of rain-
fall increases in wet years compared with dry years.

The rainfall maps obtained in grid form can be integrated into a geographic informa-
tion system (GIS). This is a necessary tool for planning and managing water resources 
in a context of climate change. 
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