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Summary

Many real 3D objects have complex geometric shapes in various types of analyses. Image of 
these objects is recorded in the form of a 2D map. In the analysis, a simplification of this image 
to basic 2D figures with defined geometry is often needed. The paper presents an analysis of the 
geometry of a flat image (an image of a 3D object) using regular polygons. Geometry properties 
(F form, C centroid, S size) were determined to describe the object. Various criteria of selection 
of the ‘best’ regular n-sided polygon for a given 2D object (solved theoretically) were put for-
ward. In the paper, criteria for describing a 2D object by regular n-sided polygons were defined 
on the basis of determining the measure of object shape elongation (e). In the ‘blind’ theoreti-
cal example, it was tested whether the individual shape measures listed in the paper allow for 
correct identification of the shapes of given 2D objects. The practical application of measures is 
illustrated by two actual examples. While in the first example the shape of the Canary Islands is 
analysed, the second example describes the shape of Poland’s borders. Actual examples deliver 
different results for different measures. In effect, there is no clear objective criterion for select-
ing a polygon shape. The simplifications of the shape of an object presented in the paper should 
not be equated with the object’s generalization. Such simplifications are used in GIS to visualize 
geographic analyses based on the data available in the primary database, because the object will 
retain the character of the shape in the simplest possible geometry and neighborhood, and does 
not lose any of the scope and accuracy of the attributes assigned to a given object in the database. 
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1.	 Introduction  

Various fields of knowledge and technology require analyses of the geometry of real 
objects as well as descriptive and statistical data assigned to their images [Bertin 1983, 
Müller et al. 1995, Dent 1996, Liu et al. 2010] used in spatial information systems (GIS) 
[Harrie and Weibel 2007]. Real objects are presented on a plane in the forms of photos, 
sketches, plans or maps. Map generalization uses transformation operations to create 
smaller-scale maps from larger-scale maps, being a key procedure for modelling and 
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understanding geographical space. In such a case, these real objects are usually trans-
formed into their projections on a horizontal plane, and thus take a two-dimensional 
(often simplified) shape [Angel et al. 2010]. For the purposes of analysis, real objects are 
sometimes recorded using multi-representation databases as simplified (generalized) 
two-dimensional (2D) objects. [He et al. 2018] The 2D objects that will be analysed 
in this paper are polygonal lines, not intersecting, closed, and with m vertices (m > 2), 
constituting a  simply connected domain. This assumption simplifies the conduct of 
analyses and is sufficient at this stage of work on this issue. 

Each object can be determined by assigning three geometric properties [Prokop 
Reeves 1992]. These basic geometric properties are:
•	 F – form,
•	 C – centroid,
•	 S – size.

Every simply connected object can be geometrically defined by FCS properties. For 
2D objects, the description of form is often limited to simple geometric figures; the 
centroid are two coordinates of the centre of gravity in the adopted coordinate system; 
and the size can be identified with an area, for example. Descriptive data can refer to 
a figure, but it is more useful to assign qualitative or quantitative values to a centroid. 

Of the many simple geometric figures, convex polygons are particularly important 
in the description of 2D object geometry. It is crucial to select the number of vertices for 
a given case of analysis. An interesting issue is determining criteria for the selection of 
polygon geometry for a particular real object in order to minimize the number of polygon 
vertices. When the number of vertices of a regular polygon tend to infinity, a description 
of an object is obtained using a circle (examining the circularity of an object).

The geometric properties of a  polygon with which the geometry of an object is 
described can also be defined via FCS, whereby the properties of the polygon should 
correspond to the geometric properties of the described object. 

The shape of an actual object is very often similar to a theoretical figure, though 
sometimes assigning an object to a  particular shape is a  very subjective decision.  
It has long been attempted to attribute specific shapes to different objects. Initially, it 
was descriptive [Kohl 1850], and only later different shape measures were being intro-
duced [Kosturbiec 1972]. Some analyses examine the belonging of an actual object to 
a theoretical shape (for example, a circularity study, or a study of whether an object 
is a rectangle). In this regard, it is important to determine the criterion for matching 
a  figure to an actual object. For individual objects, the analyst can decide to assign 
a figure. For large collections of objects that are automatically analysed, it is necessary 
to adopt an appropriate measure and criterion.

Depending on the purpose of object description, different criteria for matching 
a polygon to an object may be applied. For example, in many numerical cases, in image 
analysis, the smallest polygon surrounding a given real object is sought as a criterion 
of polygon selection for that object. Studying the shape of an object and determin-
ing its regularity is another, separate issue. For example, the circularity of an object is 
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examined, whether an object is a rectangle, whether it is L-shaped, and so on [Hu 1962, 
Peura and Ilvarinen 1997, Bae et al. 2009, Zandonadi et al. 2013].

This paper will propose a description of the geometry of 2D objects using regular 
convex polygons. The considerations will be illustrated by three examples. The theo-
retical example will test the correctness of various measures as to their use for regular 
shape analysis (algorithm correctness). In actual examples, different measures for an 
analysis of real objects will be compared.

Images of objects and phenomena were made by man due to a social need of shar-
ing geographical information. The generalisation of geographical information has been 
and still is a necessity resulting first from data scarcity and now from data abundance 
[Douglas and Peucker 1973, Brassel and Weibel 1988, Bard and Ruas 2005, Chrobak et 
al. 2007, Mackaness and Ruas 2007].

The development of methods of generalization (simplification) of object geometry 
in digital topographic cartography used to create standard cartography studies (topo-
graphic maps in an accepted scale sequence) is for the most part an improvement of 
algorithms with a sample assessment of the similarity of the geometry of the figures 
before and after the process on the basis of the data collected in databases. It is now 
sought to design this process in order to make the result independent of the user, i.e. 
to develop a standard for selecting the characteristics necessary for automatic object 
generalization [Chrobak 2010]. Method of object simplification described in the paper 
is not a generalization in the above sense.

This is a proposal for how to generalize geometric data used to construct maps in 
a GIS (geographic information system) environment that present thematic information 
generated from a database. The article does not refer to the generalization of content 
(attribute data) and the consequences of its application to maps showing indicators 
and quantitative and qualitative phenomena with decreasing map capacity [Cebrykow 
2017]. 

2.	 Geometry of n-polygons 

The analysis of the geometry of a real 2D object that is a simply connected closed figure 
can be carried out based on figures with clearly defined geometric parameters. The 
simplest figures that can be used for this are regular convex polygons. The following 
definition should be introduced: 

Definition 1. In Euclidean space, a  regular convex (n > 2) n-angle (polygon) is 
a closed polygonal with n vertices, all sides of which have an equal length (equilateral) 
and all internal angles are equal (equiangular). 

In every regular polygon one can describe a  circle passing through all vertices 
(radius of the described circle – circumradius) and inscribe a circle that is tangent to all 
sides of the polygon (radius of the circle inscribed – apothem). 

Figure 1 shows an example of a  regular polygon (n = 6) with its centre (S), side 
(b), middle angle (b), radii of circles inscribed and described in a  polygon marked. 
According to the markings in Figure 1, the following dependencies can be noted: 
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•	 central angle of polygon (b)

	 β π= 2
n

	 (1)

•	 side of polygon (b)

	 b R R R Rc a c a= − = ( ) = ( )2 2 2
2

2
2

sin tgβ β 	 (2)

•	 polygon area (A)

	 A nbR nR nRa
a c= = ( ) =

( )
2 2 2

2 2tg sinβ β 	 (3)

given that: 
n	 –	number of vertices, 
Rc	–	circumradius, 
Ra	–	apothem. 

Fig. 1.	 Regular polygon (n = 6) 

S

b

β

Ra

Rc

It can be shown that the minimum distance from the central point (S) of a regular 
polygon to the edge is apothem (Ra), and the maximum is circumradius (Rc). 

3.	 Object geometry properties 

In relation to the FCS description of the geometry of real objects, individual properties 
will be presented below.

The location is one of the most important properties of an object. This applies 
to objects of any type. Regardless of how the calculation is performed and what the 
adopted calculation algorithm is, the location of an object should be its invariant. 
Unfortunately, real objects often have very complex shapes that give rise to controversy 
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as to choosing location. The basic premise is to take the right point to which an object 
can be assigned. Usually, it is the centroid of an object – its centre of gravity – that is 
adopted as this point. It is claimed here that solutions which equate average edge point 
values with the geometric centre of an object are wrong.

Take an actual object with m vertices (xi, yi ), so it can be the following:
•	 object area (integral by object area)

	 A dA
A

= ∫ 	 (4)

•	 centre of gravity coordinates S(xS,yS )
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•	 average coordinates M x y,( )
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The equations (5) and (6) are the same for the number of edge points tending to 
infinity. Also, for regular objects and at evenly distributed edge points, the points S (5) 
and M (6) are the same. Unfortunately, these points are different for most real objects. 
It is argued that the centroid of an object should be taken as an invariant.

For the location of real objects, there is another interesting case, namely when the 
centroid lies outside the borders of an object (for example, for U-shaped or L-shaped 
objects). 

The dimension of the adopted theoretical polygon depends on the purpose for 
which it is calculated. In literature, there are three basic criteria for choosing the size of 
a theoretical polygon for a real object:
•	 searching for the largest (largest) empty figure lying inside an object (LIP – Largest 

Inner Polygon) [Molano et al. 2012, Sarkar et al. 2018],
•	 searching for a  figure with identical surface area (EMP – Equivalent Measure 

Polygon) [Rosin 2003, Quintet and Gniadek 2017],
•	 searching for the smallest (smallest) figure lying outside in which the object is lo-

cated (SOP – Smallest Outer Polygon) [Smith and Chang 1996, Chaudhuri et al. 
2012]. 
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Of course, choosing this criterion is fundamental, and depends on the purpose for 
which a theoretical figure is used. The search for the largest empty figure lying inside 
(LIP) is related to production processes and optimization of material consumption (e.g. 
cutting out products from a sheet of material). In turn, the search for figures with iden-
tical surface area (EMP), but with a simpler (regular) shape is a part of generalization of 
objects in cartography. However, the search for the smallest surrounding figure (SOP) 
is very often used in image processing.

In principle, there is an unlimited variety of shapes of real objects. However, for 
the purpose of describing an object, the shape and name assignment of that shape to 
an object is evaluated. A commonly known and accepted example is a description of 
the shape of the Apennine peninsula, which usually is said to resemble a shoe. A very 
large group of irregular shapes of objects is described as letters. Therefore, L-shaped or 
U-shaped objects, and others.

This paper focuses on regular objects that can be described as regular polygon 
shapes. For this purpose, it must be defined whether an actual object can be considered 
regular, or whether it is possible to further suggest a similarity to a regular polygon. For 
example, whether the object’s shape is a pentagon or is similar to a pentagon.

When analysing the shape of real objects, the numerical size of a set of elements 
(number of objects) is significant. For small sets, shape analysis can be conducted in 
one stage, while for large sets it is possible to carry out a step-by-step approach related 
to the geometrical properties of regular figures.

Knowing that, for regular polygons, the centre of gravity is an equidistant point from 
all its vertices, can be considered as the first criterion for the identification of regularity. 
Therefore, on the basis of this observation, the following proposition can be put.

Theorem 1. If the centre of gravity lies outside of an object or on its edge, the object 
is certainly not a regular convex polygon.

This proposition can be extended: if considering equations from (1) to (3), then the 
ratio of the radius of the circle inscribed to the radius of the circle described on this 
polygon can be determined for regular polygons (7):

	
R
R

a

c

= +1
2
cosβ

	 (7)

If the possible angle values b (1) are taken, then the limits of possible solutions 
will be obtained. If, in addition, it is adopted that the radius of the inscribed circle is 
the minimum distance between the centre of gravity and any point on the edge of the 
object and the radius of the described circle corresponds to the greatest distance, then:

	 1 0 5≥ ≥d
d

min

max

. 	 (8)

Theorem 2. If the ratio of the minimum to the maximum distance of the centre of 
gravity of an object from its edge is greater than 1 or less than 0.5, the object is certainly 
not a regular convex polygon.
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This is an easy way to select objects that are not regular polygons. Of course, it is 
much more difficult to determine what kind of object is a regular polygon.

Another criterion may be used in an analysis, namely, the extended shape criterion 
(e) [Stojmenović and Žunić 2008]. In this regard, the appropriate inertia modules for 
the object as in Figure 2 need to be calculated. Axial inertia modules are (9):
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Fig. 2.	 Object schema for moments of inertia calculation 

Figure 2 shows the direction of extension of an object that matches the direction of 
the maximum principal moment (ae). Red lines show the coordinate system axes used 
to calculate central moments of inertia.

Using Steiner’s theorem [Pilkey 1993], central moments of inertia (Fig. 2) can be 
determined as follows:
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Based on the equation (10), the principal moments of inertia of an object:
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And eventually the extension of an object as the ratio of the principal moments can 
be noted as:
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Analysing the shape of objects in regard to their regularity it is possible to calculate 
the size of their extension. Theorem 3 can be proposed as follows: 

Theorem 3. For regular convex polygon the extension is equal to e = 1.
Thus, on the basis of the above theorem each regular form elongates by 1, while not 

every figure with an elongation of 1 is a regular polygon. For the analysis of real objects, 
the limit value of elongation e1 should be present, for which a real object can still be 
thought of as a regular figure. The selection of this limit for real objects is a subjective 
act. 

By using the e1 limit and the centroid of an object, first, irregular objects can be 
selected, and then, the calculation completed. For other objects, when the elongation 
is less than e1, a regular polygon shape can be determined immediately, and when it is 
larger, additional analysis needs to be performed. 

4.	 Polygon shape 

In the literature, a lot of different measures can be found to describe the shape of an 
object [Boyce and Clark 1964, Austin 1984, Maceachren 1985, Zunic and Rosin 2004, 
Loy et al. 2005, Williams and Wentz 2008]. These propositions can be grouped on theo-
retical basis. The following are some selected theoretical solutions for the shape index 
(Si) that will be tested in this paper. 

Relationship between the perimeter and the area of a figure (Perimeter – Area):

	 Si A
PP = 2 π 	 (13)

Relationship between the largest linear dimension and the area (Linear dimension 
– Area):

	 Si A
LL =

2 	 (14)
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Relationship between the area of an object and the areas of the circles inscribed and 
described on a figure (Area – Circle):

	 Si A
AA

W

C

= 	 (15)

Measure based on the values of radii from the centre of a figure to the edge (Radial):

	 Si
mR

R R R
R

mR i
i

m i
i

m

= − =
=

=∑
∑100

1

1,          	 (16)

given that in the above equations: 
A	 –	 area,
P	 –	 perimeter,
R	 –	 radius,
L	 –	 the largest distance between points of an object,
C	 –	 circle described,
W	 –	 circle inscribed,
O	 –	 described object,
m	 –	 number of radii from centre of gravity to edge,
RPn	 –	 regular polygon with n vertex. 

Below, Table 1 summarizes the shape measures for subsequent regular polygons 
based on theoretical values according to equations (13) to (16). For measure SiR the 
calculation is m = 100 radii Ri.

Table 1.	 Shape measures for different regular polygons

Measure
Number of polygon vertices

3 4 5 6 7 8 9 10 ∞

SiP (13) 0.7776 0.8862 0.9299 0.9523 0.9654 0.9737 0.9793 0.9833 1.0000

SiL (14) 0.4330 0.5000 0.6572 0.6495 0.7197 0.7071 0.7456 0.7347 0.7854

SiA (15) 0.2500 0.5000 0.6545 0.7500 0.8117 0.8536 0.8830 0.9045 1.0000

SiR100(16) 19.4012 9.6235 5.8726 4.0060 2.9609 2.3172 1.8973 1.6723 1.0000

The last column corresponds to the measure values for a  circle. When analys-
ing Table 1, it is important to notice that the values of each shape measure for small 
amounts of polygon vertices are quite significantly different. As the number of vertices 
increases, the measure values come closer together. It is similar when polygons are 
identified by a human. Comparing a triangle with a square is simple, but comparing an 
octagon with a nine-angle, for instance, is troublesome.
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Since this paper is concerned with specific shapes of regular polygons, three meas-
ures based on the best matching of an object to a particular shape are analysed (Area 
– Shape).

	 Si A
AS

O F

O F
1 = ∩

∪
	 (17)

	 Si A A
AS

O F
1
* = −



	 (18)

	 Si A A
AS

RPW RPC
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	 (19)

given that:
A AO ≡ 	 –	 area,
O	 –	 described object,
F	 –	 polygon,
RPW	 –	 polygon inscribed in a circle with a radius Rc,
RPW	 –	 polygon described on a circle with a radius Ra.

For measures (17) to (19), for each n the measure values are:
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The measures proposed in equations (17) and (18) are equal in calculations, there-
fore only two measures will be further analysed.

The measures above apply to ‘ideal’ regular polygons. The next section provides 
a theoretical example of calculations for various objects in the shape of regular polygons.

For real objects, not all measures are suitable for analysis. Measure SiP (13) is very 
simple to calculate, but produces erroneous results, for example, for ‘wavy’ edges 
(changing the perimeter without changing the area). The measure SiL (14) is difficult 
for automatic analysis, because the measure limits do not belong to a single monotone 
sequence. Also, the measure SiR (16) is not conclusive for various numbers of radii 
(different m), because the result depends on the number of radii used in the calcula-
tion, thus it is important to always take the same number of radii. Measures based on 
comparisons to figures (17) to (19) are more stable, but instead are quite labour-and 
time-consuming (calculations can take quite a long time). 

5.	 Theoretical example of shape measures 

Analysis of the correctness of the adopted measures is best carried out in the form 
of ‘blind’ examples. The question was raised whether the indicated shape measures 
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correctly describe the shape of objects chosen in advance. To do this, six figures were 
drawn, from triangle to octagon (Fig. 3), which were then digitized in the local coordi-
nate system (saving points along the edges of an object). As is visible in Figure 3, objects 
resemble regular polygons in shape, but they are not exactly regular polygons.

Fig. 3.	 Theoretical objects in measures analyses 

1 2

3
4

5

6

Subsequently, using a specially developed program, a shape measure was designated 
for each object according to the formulas (13) to (19). The results of the calculations 
were divided into two tables. Table 2 shows the results for data measures calculated with 
equations (13) to (16). Data from Table 1 are used as reference values of the measures. 
The measure values obtained from the calculations were compared with the reference 
values, and then assigned to the resulting number of polygon vertices n Si. 

Table 2.	 Determination of the shape of a figure on the basis of measures SiP, SiL, SiA, SiR 

No. Theoretical 
shape Vertex SiP n SiP SiL n SiL SiA n SiA SiR n SiR

1 3 18 0.7775 3 0.4286 3 0.2356 3 19.7292 3

2 4 21 0.8879 4 0.4990 4 0.4862 4 9.5911 4

3 5 21 0.9307 5 0.6481 5 0.6353 5 5.8667 5

4 6 30 0.9521 6 0.6482 6 0.7428 6 4.0557 6

5 7 23 0.9653 7 0.7143 7 0.7822 7 2.9443 7

6 8 38 0.9745 8 0.7031 8 0.8301 8 2.4102 8

As it is demonstrated above, in Table 2, all measures SiP, SiL, SiA, SiR correctly desig-
nated the object shapes to be analysed. 

For measures based on comparative analysis with polygon shapes and searching for 
the extremum of a measure, the results are summarized in Table 3. Calculations were 
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performed for regular polygons from n = 3 to n = 10. For SiS1 maximum measures are 
required and for SiS2 and SiS3 minimum measures. Extreme measure values for indi-
vidual objects are highlighted in bold in Table 3.

On the basis of the results obtained in Table 3, it should be concluded that all meth-
ods correctly indicated the shapes of the analysed objects.

Table 3.	 Determination of the shape of a figure on the basis of measures SiS1, SiS2 

Analysed 
shape Method

Regular shape

3 4 5 6 7 8 9 10

3
SiS1 0.9786 0.6740 0.6841 0.7015 0.6854 0.6858 0.6862 0.6858

SiS2 0.0581 0.8194 1.1790 1.3806 1.5047 1.5864 1.6430 1.6838

4
SiS1 0.6850 0.9850 0.8219 0.8317 0.8324 0.8420 0.8346 0.8357

SiS2 0.6242 0.0281 0.3110 0.4648 0.5582 0.6191 0.6611 0.6913

5
SiS1 0.6893 0.8243 0.9833 0.8907 0.8952 0.8978 0.8979 0.9032

SiS2 0.8585 0.2321 0.0299 0.1703 0.2550 0.3101 0.3479 0.3750

6
SiS1 0.7072 0.8300 0.8844 0.9945 0.9197 0.9242 0.9271 0.9281

SiS2 0.9904 0.3756 0.1241 0.0096 0.0899 0.1419 0.1776 0.2032

7
SiS1 0.6973 0.8350 0.8917 0.9209 0.9848 0.9416 0.9459 0.9466

SiS2 1.0236 0.4178 0.1717 0.0413 0.0369 0.0875 0.1223 0.1471

8
SiS1 0.6924 0.8413 0.8940 0.9264 0.9423 0.9921 0.9548 0.9571

SiS2 1.0764 0.4715 0.2278 0.0990 0.0278 0.0221 0.0620 0.0864

On the basis of the results obtained in Table 3, it should be concluded that all meth-
ods based on polygon shapes correctly indicated the shapes of the analysed objects.

In Summary, all methods correctly defined the shapes of the specified test objects. 

6.	 Example of islands shapes analysis 

As another example, the Canary Islands archipelago was analysed whether the geom-
etry of the individual islands of the archipelago can be determined on the basis of the 
proposed algorithm.

The Canary Islands belong to Spain, located west of Africa in the Atlantic Ocean. The 
Archipelago consists of seven main islands: El Hierro, Fuerteventura, Gran Canaria, La 
Gomera, Lanzarote, La Palma, Tenerife, and several smaller. The mutual distribution of 
islands is shown in Figure 4.

Object geometry data were obtained by digitizing a  map. Table 4 contains the 
number of points (the column 3 – k) that describe the shape of the islands (after digiti-



Regular polygons in 2D objects shape description 55

Geomatics, Landmanagement and Landscape No. 4 • 2020

zation). Table 4 in column 4 (A) shows the designated areas of the islands on the basis 
of digitised data. 

Then, each island was analysed in section 3. For each island, the centroid, elonga-
tion and the direction of elongation were calculated, as well as the ratio of the smallest 
to the largest distance from the centroid (8). A critical elongation value (eb) equal to 1.3 
was used for the calculation. The results of the calculations are summarized numeri-
cally in Table 2 and graphically in Figure 8. 

Table 4.	 Data on analysed islands

N Island k A
[km2]

αe
[deg] e

d
d

min

max

1 El Hierro 67 266.7 28.08 1.80 0.21

2 Fuerteventura 204 1662.9 56.20 2.88 0.17

3 Gran Canaria 189 1563.2 45.26 1.10 0.59

4 La Gomera 79 368.5 161.26 1.27 0.62

5 Lanzarote 140 815.1 34.84 2.66 0.30

6 La Palma 93 713.7 101.01 1.74 0.36

7 Tenerife 251 2039.1 38.79 1.94 0.23

An analysis of the results of the calculations compiled in Table 4 reveals that only 
for two islands (Gran Canaria and La Gomera) the elongation is below 30%. Also, the 
ratio of distance from centroid to the edge (8) is met for these two islands, so a full 
calculation was carried out for them. For the islands of Fuerteventura and Lanzarote, 
the elongation is large, exceeding 2.5. 

Fig. 4.	 Graphical presentation of calculation results 

La Palma

La Gomera

El Hierro

Tenerife

Gran Canaria

Fuerteventura

Lanzarote

50 km

Legend:
Island
Direction of elongation
Centroid
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Figure 4 shows digitized objects (islands – gray) with the calculation results. For 
each island, its centroid is marked as a  red cross. The direction of its elongation is 
marked as a black line. 

Table 5.	 Results of calculation of the shape of an island with SiP, SiL, SiA, SiR 

Method
Gran Canaria La Gomera

Measure Shape n Measure Shape n

SiP 0.7428 3 0.8546 4

SiL 0.5409 4 0.5755 4

SiA 0.3444 3 0.3866 4

SiR100 53.5852 3 9.2233 4

Table 6.	 Results of calculation of the shape of an island with SiS1, SiS2 

n
Gran Canaria La Gomera

SiS1 SiS2 SiS1 SiS2

3 0.7097 0.5252 0.7390 0.3560

4 0.8232 0.0981 0.8047 0.2276

5 0.8933 0.3711 0.8310 0.4883

6 0.8804 0.5201 0.8393 0.6316

7 0.8977 0.6107 0.8354 0.7190

8 0.8861 0.6699 0.8383 0.7763

9 0.8886 0.7107 0.8354 0.8158

10 0.8899 0.7400 0.8379 0.8442

11 0.8929 0.7618 0.8357 0.8653

12 0.8908 0.7784 0.8363 0.8814

Figure 5 shows the results of the calculations of regular polygons for the two 
analysed islands. 

When analysing the digital results in Tables 4 and 5 and graphically in Figure 5, 
it should be concluded that no clear results have been obtained from all calculation 
methods. Given the abundance of results, it could be assumed that the shape of the 
island of Gran Canaria is a triangle and of La Gomera is a quadrangle. However, as is 
shown in Figure 5, such a generalization seems wrong. Based on Figure 5, a heptagon 
subjectively fits ‘best’ to the actual shape of Gran Canaria (Fig. 5C) and hexagon to La 
Gomera (Fig. 5E).
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As this case indicates, it is impossible to eliminate the role of editor, who must adopt 
the necessary degree of generalization of the shape. However, assuming that for specific 
statistical analyses it is necessary to adopt and maintain in the form of a map an appro-
priate cartographic representation, the above-described method seems appropriate to 
apply. 

7.	 Shape of country – Poland 

The second applied example, which allows to compare different criteria for choosing 
the shape of a regular figure, concerns the Polish borders. Based on the digitalised map, 
the Polish borders were obtained in local coordinate system. 160 edge points (breaks) 
were calculated.

Figure 6 shows the results of digitization of borders (black), centroid (red cross) 
and elongation direction (blue line), which are determined according to the relations 
shown in section 3.

The preliminary calculations gave the location (in the local coordinate system) 
of the centroid, the elongation (e = 1.27), the elongation direction (ae = 149.65 deg) 
and the ratio of the smallest to the greatest distance from the centroid (0.55). Thus, it 
was indicated (on the basis of considerations in section 3) that the shape of an object 
is similar to a  regular figure, so that searching for the ‘best’ polygon can be started. 
The shape measures in Table 7 were set out according to the formulas (13) to (19). 

Fig. 5.	 Calculation results of regular polygons for the analysed cases (A, B, C for Gran Canaria; 
D, E for La Gomera) 

A B C

D E
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As a  result of the calculations, three regular polygons were obtained using different 
methods to describe the object (grade 3, 4, and 10 polygons). 

Fig. 6.	 Shape of Poland with marked centroid and elongation direction 

100 km

Table 7.	 Calculation results for describing the shape of Poland with regular polygons

Method Measure Shape n

SiP 0.7278 3

SiL 0.4759 3

SiA 0.3006 4

SiR100 64.7273 3

SiS1 

7 0.8163

10

8 0.8172

9 0.8141

10 0.8181

11 0.8165

12 0.8170

SiS2

3 0.3554

4

4 0.2407

5 0.5073

6 0.6538

7 0.7433

8 0.8019
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Figure 7 shows the results of the analysis in graphical form from Table 7. The 
shape of the analysed object (black line) with designated regular polygons (red line) is 
presented.

Analysis of the results indicates that different criteria for selecting regular polygons 
give different final results. The results are far from satisfactory, when comparing the 
obtained polygon shapes and the contour of Poland. In the subjective assessment of the 
authors of the paper, none of the obtained polygons reflects the shape of the analysed 
object. 

Fig. 7.	 Regular polygons designated for Poland’s shape (A – triangle, B – quadrilateral, C – ten-
angle) 

A B C

8.	 Conclusions 

The aim of the paper was to examine the issue of determining the geometry of 2D 
objects using convex regular polygons. It is often necessary to replace the actual shape 
with a corresponding simple figure. The description of a given shape is also often used 
by comparison to some simple figure. Of the simple figures, special attention is given 
to convex regular polygons.

Introducing a uniform geometric description of an object is a very important task. 
The geometry of an object can be described by using properties related to its form, 
centroid, and size (FCS). These three FCS indicators are, of course, characterized by 
parameters that accurately describe the object’s geometry. 

The paper defines preliminary criteria that qualify objects for an analysis using 
regular polygons. The initial criteria are based on two solutions. The elongation of an 
object and the ratio of the smallest to the largest distance between the object’s centroid 
and its edge points. 

In the literature, there are many different criteria (measures) for shape description. 
These solutions are based on different geometric elements of objects. Several methods 
have been compared in the paper, and it should be stated that for objects with a shape 
‘similar’ to regular polygons, all methods perform the calculation correctly. In the case 
of real objects, however, the results are less satisfactory, which means that they can be 
very subjective. The examples shown in the paper confirmed that for objects created 
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in the basis of regular polygons the shape of objects is described by measure criteria 
correctly, while for real objects, the results are not satisfactory. 

Further research into the description of shapes of real objects using regular poly-
gons should be conducted in the direction of the influence of the object elongation 
value on the assignment of the shape. 
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