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CORRECTIONS TO SEA LEVEL ANOMALIES DATA
DUE TO GEOCENTER MOTION

Wiestaw Kosek, Agnieszka Wnek, Maria Zbylut-Goérska

Summary

The objective of this paper is computation of the corrections to sea level anomaly data due to cent-
er of Earth mass variations. The geocenter motion model was computed from the center of mass
coordinates data determined from observations of space geodetic techniques such as Satellite
Laser Ranging (SLR), Global Navigation Satellite System (GNSS) and Doppler Orbitography
and Radiopositionig Integrated on Satellite (DORIS). In order to compute the geocenter motion
model the center of mass coordinates data were filtered using wavelet based semblance filtering
which allows computing a common signal in two time series. Based on determined geocenter
motion model a correction to sea level anomalies (SLA) data due to geocenter motion was de-
termined. This kind of correction to sea level anomaly data is of the order of few millimetres
and should be applied to altimetric measurements to refer them to the International Terrestrial
Reference Frame (ITRF) Origin considered as the center of figure.
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1. Introduction

The center of mass of the Earth (CM) is the centre of the whole Earth including its fluid
layers such as atmosphere, oceans and continental waters. The CM is distinguished
from the center of figure (CF) which is recognized as the origin of the International
Terrestrial Reference Frame (ITRF). Due to mass redistributions in the Earth’s fluid
layers the CM is instantaneous and its variations with respect to the CF are defined
as geocenter motion [Petit and Luzum 2010]. Position of the geocenter has a signifi-
cant influence on altimetric measurements since altimetric satellites orbit around the
instantaneous CM, while its orbits are determined in the ITRF with a fixed origin
(currently ITRF2008).

Actually, geocenter time series are determined based on observations from all
satellites geodesy techniques such as Satellite Laser Ranging (SLR), Global Navigation
Satellite System (GNSS) and Doppler Orbitography and Radiopositionig Integrated
on Satellite (DORIS). Previous studies [Kosek et al. 2014] indicated that the DORIS,
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GNSS and SLR geocenter time series show some agreement thus they were filtered
using wavelet based semblance filtering. This kind of filtering enables computation
a common signal in two time series, thus for this purpose the geocenter time series
from different satellites techniques were grouped in the following pairs: GNSS-DORIS,
SLR-GNSS, SLR-DORIS. The three common signals in geocenter time series were then
used to construct a stochastic model of the geocenter motion. The obtained model was
subsequently used to compute time corrections to the global sea level anomaly (SLA)
data due to geocenter variations.

2. Data

In the analyses the weekly geocenter time series from DORIS, GNSS and SLR were
used.

SLR geocenter data named GEOC94-13.GCC-1 were computed by Astronomical
Institute of the University of Bern and come from years 1994 — 2014 [Sosnica et al.
2011, 2013]. The SLR geocenter time series is expressed in the SLR terrestrial reference
frame (TRF) called SLRF2008 which is linked to the ITRF2008.

GNSS geocenter time series are combined solutions 5-4_igs.sum and are deliv-
ered by International GNSS Service (IGS) in 1994-2014 [IGS, 2014]. These geocenter
time series are determined in IGS reference frame IGb08 which is also linked to the
ITRF2008.

DORIS geocenter data set ignl1wd01.geoc is available at Crustal Dynamics Data
Information System (CDDIS) from 1994 to 2014 [Willis et al. 2005a, b, 2012] and is
expressed in the ITRF2008.

3. Wavelet based semblance filtering

In order to filter the geocenter time series obtained from observations of three inde-
pendent space techniques the wavelet semblance filtering [Cooper 2009] was applied.
This type of filtering of the geocenter time series has been widely described by Kosek
etal. [2014].

The wavelet semblance filtering allows computing a common signal in two time
series. In order to determine such signal, two time series were transformed into time-
frequency domain using the discrete wavelet transform (DWT) with Shannon wave-
let functions. The computed wavelet transform coefficients of both time series were
then used to estimate the semblance function. Assuming a fixed semblance threshold,
zero values were assigned to wavelet transform coefficients of analysed time series,
for which the semblance was below this threshold. Next, the inverse DWT was used
to determine the common signals in three pairs SLR-DORIS, SLR-GNSS and GNSS-
DORIS of the considered time series by summing 6 filtered lowest frequency compo-
nents. Afterwards, to compute the common signals from the two time series of three
pairs of satellites techniques the weighted averages were computed. The weights of the
corresponding technique pairs were assumed as inversely proportional to the variances
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of the corresponding filtered geocenter signals. Figures 1, 2 and 3 present the common
signals in SLR-DORIS, SLR-GNSS and GNSS-DORIS pairs, respectively.
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Fig. 1. The common oscillations computed by the wavelet semblance filtering (threshold equal
0.90) between the SLR (black) and DORIS (red) geocenter time series. Smoothed bright
green lines correspond to the weighted average of common signals reconstructed using
the 6 lowest frequency components
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Fig. 2. The common oscillations computed by the wavelet semblance filtering (threshold equal
0.90) between the SLR (black) and GNSS (blue) geocenter time series. Smoothed bright
green lines correspond to the weighted average of common signals reconstructed using
the 6 lowest frequency components
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Fig. 3. The common oscillations computed by the wavelet semblance filtering (threshold equal
0.90) between the GNSS (blue) and DORIS (red) geocenter time series. Smoothed bright
green lines correspond to the weighted average of common signals reconstructed using
the 6 lowest frequency components

The three common signals in geocenter time series were then used to construct
a stochastic model representing geocenter motion determined from observations of
three independent techniques. Finally, the geocenter motion model [x(1), y,(£), z,(1)]
was computed using the weighted average of three common signals. The weights of
each technique pair were assumed as inversely proportional to the variance of the
corresponding common signals. The final geocenter motion stochastic model is shown
in Figure 4.
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Fig. 4. The stochastic geocenter motion model determined as weighted average of bright green
lines (shown in Figures 1, 2 and 3) corresponding to pairs of different techniques

4. Correction to SLA data due to geocenter motion

The geocenter motion stochastic model was then used to compute time corrections to
the global sea level anomaly data.

First, each ocean grid with coordinates ¢, A was transformed from ellipsoidal to
Cartesian coordinates assuming the height above the ellipsoid equal to zero (h = 0)
[Lamparski 2001]: _

X (N + h)cos® cosA
Y |=| (N + h)coso sinA (1)

2\NT .
where: Z (I —=€")N + h)sing

zzaz—b2 N = a

, — (2)
a’ V1 —e’sin’g
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Afterwards, the stochastic geocenter motion model [x,(1), y, (1), ()] was added to
the Cartesian coordinates of each ocean grid:

X)) (X+x,00)

Y() |=| Y +y,0) 3)
2(t)) |\ Z+2,0)

The Cartesian coordinates corrected for geocenter motion model were transformed
back to ellipsoidal coordinates using the following formulae [Lamparski 2001]:
Z(t) + (e’)’bsin’©
p(t) - e’acos’®

P =NX(W) +Y(), ®=arctanj’((tt))..clla’ (e’)2=ab_zb (4)

A = arctan Y , @ =arctan
X(¢)

p’()

cos®

-N

hy, (1) =

The Cartesian coordinates corrected for geocenter motion model can be also trans-
formed back to ellipsoidal coordinates using the following recursive formulae [Osada
2009]:

Z(t) = a
tan@, = ; N, =
X(t)cosh + Y (t)sinA 1-é’sin’g
Z(t) + N é’si =
g, = Lt Rerime,_ o
X(t)cosh + Y (t)sinA 1 - e’sin’@,
Z(t) + N,e’sing = a
tanQ, = : : N, = %)
@. X(t)cosh + Y(t)sink  *  [;_ e’sin’Q,
tang, = Z(t)+ N_e’sino,_, - _ a

= N
© X(t)cosh +Y(t)sinh m

This convergence is fast since h << N [Seeber 2003] and after computing precision
of N, isless than 1 mm then:

hcp,x(t) = —“X(t)JrY(t) _ Nk or h¢,x(t) - Z(t)

—~—(1-¢)N, (6)
cosQ, SInQ;

Both methods of computing height above the ellipsoid give the same results.
Obtained during the transformation height above the ellipsoid h(t) is time correc-
tion to the SLA data due to geocenter motion.
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Figure 5 shows the maps of the time correction to the SLA data due to geocenter
motion with the 35 days sampling intervals from February 2010 to November 2013.
This correction was determined based on geocenter variations time series thus it is at
the millimetre level.

5. Conclusion

The time series of geocenter motion are actually determined from observations of all
satellite geodesy techniques. For this reason it becomes important to propose a one
general signal which will be represent geocenter motion taking into account the signals
from all three satellites techniques.

The wavelet based semblance filtering enables to compute common oscillations in
two time series. Therefore this kind of filtering enables designate common oscillations,
which then can be used to determine the stochastic model of geocenter motion. The
geocenter motion model can be applied as various type of correction to the geophysical
appointments which depend on position of the CM.

The SLA data are taken into account many corrections, for example due to pole
coordinates variations, but not include the correction resulting from geocenter motions.
Thus, the correction to SLA data due to geocenter motions was purposed because the
geocenter variations cause the systematic errors in the sea level anomalies data.
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